Monica M. Jablonski
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica M. Jablonski.
Glia | 2001
Monica M. Jablonski; Joyce Tombran-Tink; David A. Mrazek; Alessandro Iannaccone
In conditions in which the retinal pigment epithelium (RPE) is dystrophic, carries a genetic mutation, or is removed physically, Müller cells undergo degenerative changes that contribute to the retinal pathology. We previously demonstrated that pigment epithelium‐derived factor (PEDF), a glycoprotein secreted by the RPE cells with neuroprotective and differentiation properties, protects against photoreceptor degeneration induced by RPE removal. The purpose of the present study was to analyze the putative gliosupportive activity of PEDF on Müller cells of RPE‐deprived retinas and assess whether protection of Müller cells was correlated with improved photoreceptor outer segment assembly. Eyes were dissected from Xenopus laevis tadpoles, and the RPE was removed before culturing in medium containing purified PEDF, PEDF plus anti‐PEDF, or medium alone. Control eyes matured with an adherent RPE or in medium containing PEDF plus nonimmune serum. Müller cell ultrastructure was examined. Glial fibrillary acidic protein (GFAP) and glutamine synthetase were localized immunocytochemically, and the corresponding protein levels were quantified. In control retinas, Müller cells were structurally intact and formed adherens junctions with neighboring photoreceptors. In addition, they did not express GFAP, whereas glutamine synthetase expression was high. RPE removal dramatically altered the ultrastructure and biosynthetic activity of Müller cells; Müller cells failed to form adherens junctions with photoreceptors and glutamine synthetase expression was suppressed. PEDF prevented the degenerative glial response; Müller cells were ultrastructurally normal and formed junctional complexes with photoreceptors. PEDF also preserved the expression of glutamine synthetase at near‐normal levels. The morphogenetic effects of PEDF were blocked by the anti‐PEDF antibody. Our study documents the glioprotective effects of PEDF and suggests that maintenance of the proper Müller cell ultrastructure and expression of glutamine synthetase may be necessary to support the proper assembly of photoreceptor outer segments. GLIA 35:14–25, 2001.
Hearing Research | 2002
Gautam Bhattacharya; Caroline Miller; William J. Kimberling; Monica M. Jablonski; Dominic Cosgrove
People with Ushers syndrome type IIa have mutations in a novel gene encoding a protein with domains commonly found in many types of extracellular matrix and cell surface receptor proteins. Here we report that this protein, which we refer to as usherin, is a new basement membrane protein. In the mouse, usherin has a broad, but not ubiquitous, tissue distribution. Usherin is found in all of the capillary and structural basement membranes of the human and mouse retina and in the murine inner ear at both post-natal day 0 and in the adult. High levels of usherin are also observed in tissues not affected in Ushers syndrome type IIa, including spleen, testis, oviduct, epididymis, submaxillary gland, and large and small intestines. Many organs are completely devoid of usherin, including the brain, skin, kidney, lung, liver, and skeletal muscle. Expression was observed in the smooth muscle of the small intestine, colon, and oviduct, however, usherin is not present in cardiac smooth muscle. Usherin is critical for normal development and tissue homeostasis in the inner ear and retina, illustrating yet another example of the importance of basement membranes in the development and function of tissues.
Glia | 2000
Monica M. Jablonski; Alessandro Iannaccone
Within the retina, the Müller cells and photoreceptors are in close physical proximity and are metabolically coupled. It is unknown, however, whether Müller cells affect photoreceptor differentiation and outer segment membrane assembly. The objective of this study was to determine whether targeted disruption of Müller cell metabolism would induce photoreceptor dysmorphogenesis. Intact isolated Xenopus laevis embryonic eyes were cultured in medium with or without Müller cell‐specific inhibitors (i.e., α‐aminoadipic acid and fluorocitrate). To assess Müller cell injury, the gross retinal morphology was examined along with immunocytochemical assessment of Müller cell‐specific protein expression patterns. The steady‐state levels of opsin were quantified to determine whether the Müller cell inhibitors negatively affected photoreceptor protein synthesis. Müller and photoreceptor cell ultrastructure was scrutinized and the organization of the outer segment membranes was graded. In control retinas, there was no swelling of Müller cell cytoplasm. Glial fibrillary acidic protein (GFAP) was undetectable, whereas glutamine synthetase was abundant. The steady‐state level of opsin was high and photoreceptors elaborated properly folded outer segments. Exposure to both Müller cell‐specific inhibitors induced swelling of Müller cell endfeet, cytoplasmic paling and alterations of Müller cell‐specific protein expression patterns. The steady‐state level of opsin in retinas exposed to α‐aminoadipic acid was unchanged compared with control eyes, whereas, in eyes exposed to fluorocitrate, opsin levels were slightly reduced. The most significant finding was that targeted disruption of Müller cell metabolism adversely affected photoreceptor outer segment membrane assembly, causing dysmorphogenesis of nascent outer segments. These results suggest that the termination signal(s) necessary for proper outer segment folding were disrupted by targeted inhibition of Müller cells and support the hypothesis that Müller cells interact with photoreceptors through mechanisms that may regulate, at least in part, the assembly of photoreceptor outer segment membranes. GLIA 32:192–204, 2000.
American Journal of Medical Genetics Part A | 2005
Alessandro Iannaccone; Kirk Mykytyn; Antonio M. Persico; Charles Searby; Alfonso Baldi; Monica M. Jablonski; Val C. Sheffield
Recent discoveries have lead to the hypothesis that ciliary dysfunction is a mechanism underlying the pathogenesis of Bardet–Biedl syndrome (BBS). Here, we describe two individuals with decreased olfaction who are members of an extended family affected with BBS caused by a homozygous deletion (c.77‐220del) in the BBS4 gene. These findings correlate with the evidence that several BBS proteins, including BBS4, are expressed in the olfactory epithelium (OE). Although the prevalence and the spectrum of impaired olfaction in BBS are not known, the causal relationship of the BBS4 deletion in this family and the decreased olfaction is corroborated by evidence that Bbs2 and Bbs4 knockout mice have severe olfaction deficits and that also patients with BBS caused by mutations in other BBS genes can have impaired olfaction. This finding broadens the spectrum of clinical manifestations associated with BBS, confirms the role of BBS4 in olfaction, and lends support to the hypothesis that ciliary dysfunction is an important aspect of BBS pathogenesis.
Experimental Eye Research | 2009
Vidyullatha Vasireddy; Monica M. Jablonski; Naheed W. Khan; Xiao Fei Wang; Priya Sahu; Janet R. Sparrow; Radha Ayyagari
The mechanism underlying photoreceptor degeneration in autosomal dominant Stargardt-like macular degeneration (STGD3) due to mutations in the elongation of very long chain fatty acids-4 (ELOVL4) gene is not fully understood. To evaluate the pathological events associated with STGD3, we used a mouse model that mimics the human STGD3 phenotype and studied the progression of retinal degeneration. Morphological changes in the retina of Elovl4 5-bp deletion knock-in mice (E_mut(+/-)) were evaluated at 22 months of age. The localization of ELOVL4, and the expression pattern of inner retinal tissue marker proteins, and ubiquitin were determined by immunofluorescence labeling of retinal sections. Levels of the retinal pigment epithelium (RPE) lipofuscin fluorophores were measured by quantitative HPLC. Morphological evaluation of the retina revealed an accumulation of RPE debris in the subretinal space. A significant increase in the amount of ELOVL4 was observed in the outer plexiform layer in E_mut(+/-) mice compared to controls. Apart from the accumulation of ELOVL4, E_mut(+/-) mice also exhibited high expression of ubiquitin in the retina. Analysis of lipofuscin fluorophores in the RPE showed a significant elevation of A2E and compounds of the all-trans-retinal dimer series in retinas from four and ten month old E_mut(+/-) mice compared to wild-type littermates. These observations suggest that abnormal accumulation of ELOVL4 protein and lipofuscin may lead to photoreceptor degeneration in E_mut(+/-) mice.
Oncogene | 2001
Stephan X. Skapek; Suh Chin J Lin; Monica M. Jablonski; Robyn N. Mckeller; Ming Tan; Nanpin Hu; Eva Y.-H. P. Lee
The differentiation of neuronal cells in the developing mammalian retina is closely coupled to cell cycle arrest and proceeds in a highly organized manner. Cyclin D1, which regulates cell proliferation in many cells, also drives the proliferation of photoreceptor progenitors. In the mouse retina, cyclin D1 protein normally decreases as photoreceptors mature. To study the importance of the down-regulation of cyclin D1 during photoreceptor development, we generated a transgenic mouse in which cyclin D1 was persistently expressed in developing photoreceptor cells. We observed numerous abnormalities in both photoreceptors and other nonphotoreceptor cells in the retina of these transgenic mice. In particular, we observed delayed opsin expression in developing photoreceptors and alterations in their number and morphology in the mature retina. These alterations were accompanied by disorganization of the inner nuclear and plexiform layers. The expression of cyclin D1 caused excess photoreceptor cell proliferation and apoptosis. Loss of the p53 tumor suppressor gene decreased cyclin D1-induced apoptosis and led to microscopic hyperplasia in the retina. These findings are distinct from other mouse models in which the retinoblastoma gene pathway is disrupted and suggest that the IRBP–cyclin D1 mouse model may recapitulate an early step in the development of retinoblastoma.
Journal of Pharmaceutical Sciences | 2013
Mohammed Mostafa Ibrahim; Abd Elgawad Helmy Abd-Elgawad; Osama Abd Elazeem Soliman; Monica M. Jablonski
Celecoxib-loaded NPs were prepared from biodegradable polymers such as poly-ε-caprolactone (PCL), poly(L-lactide) (PLA), and poly(D,L-lactide-co-glycolide) (PLGA) by spontaneous emulsification solvent diffusion method. Different concentrations of polymers, emulsifier, and cosurfactants were used for formulation optimization. Nanoparticles (NPs) were characterized regarding their particle size, PDI, zeta potential, shape, morphology, and drug content. Celecoxib-loaded NPs were incorporated into eye drops, in situ gelling system, and gel and characterized regarding their pH, viscosity, uniformity of drug content, in vitro release, and cytotoxicity. The results of optimized celecoxib-loaded PCL-, PLGA-, and PLA-NPs, respectively, are particle size 119 ± 4, 126.67 ± 7.08, and 135.33 ± 4.15 nm; zeta potential -22.43 ± 2.91, -25.46 ± 2.35, and -31.81 ± 2.54 mV; and encapsulation efficiency 93.44 ± 3.6%, 86.00 ± 1.67%, and 79.04 ± 2.6%. TEM analyses revealed that NPs have spherical shapes with dense core and distinct coat. Formulations possessed uniform drug content with pH and viscosity compatible with the eye. Formulations showed sustained release without any burst effect with the Higuchi non-fickian diffusion mechanism. Cytotoxicity studies revealed that all formulations are nontoxic. Our formulations provide a great deal of flexibility to formulation scientist whereby sizes and zeta potentials of our NPs can be tuned to suit the need using scalable and robust methodologies. These formulations can thus serve as a potential drug delivery system for both anterior and posterior eye diseases.
Human Molecular Genetics | 2011
Venkata Ramana Murthy Chavali; Naheed W. Khan; Catherine Cukras; Dirk Uwe Bartsch; Monica M. Jablonski; Radha Ayyagari
Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruchs membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.
Investigative Ophthalmology & Visual Science | 2009
Geereddy Bhanuprakash Reddy; Vidyullatha Vasireddy; Nawajes A. Mandal; Mrudula Tiruvalluru; Xiao Fei Wang; Monica M. Jablonski; Giridharan Nappanveettil; Radha Ayyagari
PURPOSE A strong association between retinal degeneration and obesity has been shown in humans. However, the molecular basis of increased risk for retinal degeneration in obesity is unknown. Thus, an animal model with obesity and retinal degeneration would greatly aid the understanding of obesity-associated retinal degeneration. The retinal abnormalities in a novel rat model (WNIN-Ob) with spontaneously developed obesity are described. METHODS Histologic and immunohistochemical examination were performed on retinal sections of 2- to 12-month-old WNIN-Ob rats, and findings were compared with those of lean littermate controls. RNA from retinas of 12-month-old WNIN-Ob and lean littermate rats was used for microarray and qRT-PCR analysis. RESULTS The WNIN-Ob rats developed severe obesity, with an onset at approximately 35 days. Evaluation of retinal morphology in 2- to 12-month-old WNIN-Ob and age-matched lean littermate controls revealed progressive retinal degeneration, with an onset between 4 to 6 months of age. Immunohistochemical analysis with anti-rhodopsin, anti-cone opsin, and PSD-95 antibodies further confirmed retinal degeneration, particularly rod cell loss and thinner outer plexiform layer, in the obese rat retina. Gene expression by microarray analysis and qRT-PCR established activation of stress response, tissue remodeling, impaired phototransduction, and photoreceptor degeneration in WNIN-Ob rat retina. CONCLUSIONS WNIN-Ob rats develop increased stress in retinal tissue and progressive retinal degeneration after the onset of severe obesity. The WNIN-Ob rat is the first rat model to develop retinal degeneration after the onset of obesity. This novel rat model may be a valuable tool for investigating retinal degeneration associated with obesity in humans.
Investigative Ophthalmology & Visual Science | 2013
Justin P. Templeton; Natalie E. Freeman; John M. Nickerson; Monica M. Jablonski; Tonia S. Rex; Robert W. Williams; Eldon E. Geisert
PURPOSE Innate immunity plays a role in many diseases, including glaucoma and AMD. We have used transcriptome profiling in the mouse to identify a network of genes involved in innate immunity that is present in the normal retina and that is activated by optic nerve crush (ONC). METHODS Using a recombinant inbred (RI) mouse strain set (BXD, C57BL/6 crossed with DBA/2J mice), we generate expression datasets (Illumina WG 6.2 arrays) in the normal mouse retina and 2 days after ONC. The normal dataset is constructed from retinas from 80 mouse strains and the ONC dataset is constructed from 62 strains. These large datasets are hosted by GeneNetwork.org, along with a series of powerful bioinformatic tools. RESULTS In the retina datasets, one intriguing network involves transcripts associated with the innate immunity. Using C4b to interrogate the normal dataset, we can identify a group of genes that are coregulated across the BXD RI strains. Many of the genes in this network are associated with the innate immune system, including Serping1, Casp1, C3, Icam1, Tgfbr2, Cfi, Clu, C1qg, Aif1, and Cd74. Following ONC, the expression of these genes is upregulated, along with an increase in coordinated expression across the BXD strains. Many of the genes in this network are risk factors for AMD, including C3, EFEMP1, MCDR2, CFB, TLR4, HTA1, and C1QTNF5. CONCLUSIONS We found a retina-intrinsic innate immunity network that is activated by injury including ONC. Many of the genes in this network are risk factors for retinal disease.