Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radha Ayyagari is active.

Publication


Featured researches published by Radha Ayyagari.


Nature Genetics | 2001

A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy

Kang Zhang; Marina Kniazeva; Min Han; Wen Li; Zhengya Yu; Zhenglin Yang; Yang Li; Michael L. Metzker; Rando Allikmets; Donald J. Zack; Laura E. Kakuk; Pamela S. Lagali; Paul Wong; Ian M. MacDonald; Paul A. Sieving; David J. Figueroa; Christopher P. Austin; Robert J. Gould; Radha Ayyagari; Konstantin Petrukhin

Stargardt-like macular dystrophy (STGD3, MIM 600110) and autosomal dominant macular dystrophy (adMD) are inherited forms of macular degeneration characterized by decreased visual acuity, macular atrophy and extensive fundus flecks. Genetic mapping data suggest that mutations in a single gene may be responsible for both conditions, already known to bear clinical resemblance. Here we limit the minimum genetic region for STGD3 and adMD to a 0.6-cM interval by recombination breakpoint mapping and identify a single 5-bp deletion within the protein-coding region of a new retinal photoreceptor-specific gene, ELOVL4, in all affected members of STGD3 and adMD families. Bioinformatic analysis of ELOVL4 revealed that it has homology to a group of yeast proteins that function in the biosynthesis of very long chain fatty acids. Our results are therefore the first to implicate the biosynthesis of fatty acids in the pathogenesis of inherited macular degeneration.


American Journal of Human Genetics | 2005

Mutations in TCF8 Cause Posterior Polymorphous Corneal Dystrophy and Ectopic Expression of COL4A3 by Corneal Endothelial Cells

Charles M. Krafchak; Hemant Pawar; Alan Sugar; Paul R. Lichter; David A. Mackey; Shahzad I. Mian; Theresa Nairus; Victor M. Elner; Miriam T. Schteingart; Catherine A. Downs; Theresa G. Kijek; Jenae M. Johnson; Edward H. Trager; Frank W. Rozsa; Nawajes A. Mandal; Michael P. Epstein; Douglas Vollrath; Radha Ayyagari; Michael Boehnke; Julia E. Richards

Posterior polymorphous corneal dystrophy (PPCD, also known as PPMD) is a rare disease involving metaplasia and overgrowth of corneal endothelial cells. In patients with PPCD, these cells manifest in an epithelial morphology and gene expression pattern, produce an aberrant basement membrane, and, sometimes, spread over the iris and nearby structures in a way that increases the risk for glaucoma. We previously mapped PPCD to a region (PPCD3) on chromosome 10 containing the gene that encodes the two-handed zinc-finger homeodomain transcription factor TCF8. Here, we report a heterozygous frameshift mutation in TCF8 that segregates with PPCD in the family used to map PPCD3 and four different heterozygous nonsense and frameshift mutations in TCF8 in four other PPCD probands. Family reports of inguinal hernia, hydrocele, and possible bone anomalies in affected individuals suggest that individuals with TCF8 mutations should be examined for nonocular anomalies. We detect transcripts of all three identified PPCD genes (VSX1, COL8A2, and TCF8) in the cornea. We show presence of a complex (core plus secondary) binding site for TCF8 in the promoter of Alport syndrome gene COL4A3, which encodes collagen type IV alpha 3, and we present immunohistochemical evidence of ectopic expression of COL4A3 in corneal endothelium of the proband of the original PPCD3 family. Identification of TCF8 as the PPCD3 gene provides a valuable tool for the study of critical gene regulation events in PPCD pathology and suggests a possible role for TCF8 mutations in altered structure and function of cells lining body cavities other than the anterior chamber of the eye. Thus, this study has identified TCF8 as the gene responsible for approximately half of the cases of PPCD, has implicated TCF8 mutations in developmental abnormalities outside the eye, and has presented the TCF8 regulatory target, COL4A3, as a key, shared molecular component of two different diseases, PPCD and Alport syndrome.


Nature Genetics | 2010

AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis.

Carrie M. Louie; Gianluca Caridi; Vanda S. Lopes; Francesco Brancati; Andreas Kispert; Madeline A. Lancaster; Andrew M. Schlossman; Edgar A. Otto; Michael Leitges; Hermann Josef Gröne; Irma Lopez; Harini V. Gudiseva; John F. O'Toole; Elena Vallespín; Radha Ayyagari; Carmen Ayuso; Frans P.M. Cremers; Anneke I. den Hollander; Robert K. Koenekoop; Bruno Dallapiccola; Gian Marco Ghiggeri; Friedhelm Hildebrandt; Enza Maria Valente; David S. Williams; Joseph G. Gleeson

Degeneration of photoreceptors is a common feature of ciliopathies, owing to the importance of the specialized ciliary structure of these cells. Mutations in AHI1, which encodes a cilium-localized protein, have been shown to cause a form of Joubert syndrome that is highly penetrant for retinal degeneration. We show that Ahi1-null mice fail to form retinal outer segments and have abnormal distribution of opsin throughout their photoreceptors. Apoptotic cell death of photoreceptors occurs rapidly between 2 and 4 weeks of age in these mice and is significantly (P = 0.00175 and 0.00613) delayed by a reduced dosage of opsin. This phenotype also shows dosage-sensitive genetic interactions with Nphp1, another ciliopathy-related gene. Although it is not a primary cause of retinal blindness in humans, we show that an allele of AHI1 is associated with a more than sevenfold increase in relative risk of retinal degeneration within a cohort of individuals with the hereditary kidney disease nephronophthisis. Our data support context-specific roles for AHI1 as a contributor to retinopathy and show that AHI1 may explain a proportion of the variability in retinal phenotypes observed in nephronophthisis.


Investigative Ophthalmology & Visual Science | 2011

Cone Photoreceptor Abnormalities Correlate with Vision Loss in Patients with Stargardt Disease

Yingming Chen; Kavitha Ratnam; S. Sundquist; Brandon J. Lujan; Radha Ayyagari; V. Harini Gudiseva; Austin Roorda; Jacque L. Duncan

PURPOSE. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). METHODS. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. RESULTS. Patients were 15 to 55 years old, and visual acuity ranged from 20/25-20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. CONCLUSIONS. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death.


PLOS ONE | 2011

Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation.

Vidyullatha Vasireddy; Venkata Ramana Murthy Chavali; Victory Joseph; Rajendra S. Kadam; Jonathan H. Lin; Jeffrey A. Jamison; Uday B. Kompella; Geereddy Bhanuprakash Reddy; Radha Ayyagari

The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP). There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects.


American Journal of Human Genetics | 2010

A Mutation in SLC24A1 Implicated in Autosomal-Recessive Congenital Stationary Night Blindness

S. Amer Riazuddin; Amber Shahzadi; Christina Zeitz; Zubair M. Ahmed; Radha Ayyagari; Venkata Ramana Murthy Chavali; Virgilio G. Ponferrada; Isabelle Audo; Christelle Michiels; Marie Elise Lancelot; Idrees Ahmad Nasir; Ahmad Usman Zafar; Shaheen N. Khan; Tayyab Husnain; Xiaodong Jiao; Ian M. MacDonald; Sheikh Riazuddin; Paul A. Sieving; Nicholas Katsanis; J. Fielding Hejtmancik

Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder that can be associated with impaired night vision. The last decade has witnessed huge progress in ophthalmic genetics, including the identification of three genes implicated in the pathogenicity of autosomal-recessive CSNB. However, not all patients studied could be associated with mutations in these genes and thus other genes certainly underlie this disorder. Here, we report a large multigeneration family with five affected individuals manifesting symptoms of night blindness. A genome-wide scan localized the disease interval to chromosome 15q, and recombination events in affected individuals refined the critical interval to a 10.41 cM (6.53 Mb) region that harbors SLC24A1, a member of the solute carrier protein superfamily. Sequencing of all the coding exons identified a 2 bp deletion in exon 2: c.1613_1614del, which is predicted to result in a frame shift that leads to premature termination of SLC24A1 (p.F538CfsX23) and segregates with the disorder under an autosomal-recessive model. Expression analysis using mouse ocular tissues shows that Slc24a1 is expressed in the retina around postnatal day 7. In situ and immunohistological studies localized both SLC24A1 and Slc24a1 to the inner segment, outer and inner nuclear layers, and ganglion cells of the retina, respectively. Our data expand the genetic basis of CSNB and highlight the indispensible function of SLC24A1 in retinal function and/or maintenance in humans.


Progress in Retinal and Eye Research | 2010

Genetics and molecular pathology of Stargardt-like macular degeneration

Vidyullatha Vasireddy; Paul Wong; Radha Ayyagari

Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3 and may lead to a better understanding of the process of macular disease in general.


Human Mutation | 1999

NOVEL MUTATIONS IN XLRS1 CAUSING RETINOSCHISIS, INCLUDING FIRST EVIDENCE OF PUTATIVE LEADER SEQUENCE CHANGE

Kelaginamane T. Hiriyanna; Eve L. Bingham; Beverly M. Yashar; Radha Ayyagari; Gerald A. Fishman; Kent W. Small; David V. Weinberg; Richard G. Weleber; Richard Alan Lewis; Sten Andréasson; Julia E. Richards; Paul A. Sieving

Juvenile retinoschisis is an X‐linked recessive disease caused by mutations in the XLRS1 gene. We screened 31 new unrelated patients and families for XLRS1 mutations in addition to previously reported mutations for 60 of our families (Retinoschisis Consortium, Hum Mol Genet 1998;7:1185–1192). Twenty‐three different mutations including 12 novel ones were identified in 28 patients. Mutations identified in this study include 19 missense mutations, two nonsense mutations, one intragenic deletion, four microdeletions, one insertion, and one intronic sequence substitution that is likely to result in a splice site defect. Two novel mutations, c.38T→C (L13P) and c.667T→C (C223R), respectively, present the first genetic evidence for the functional significance of the putative leader peptide sequence and for the functional significance at the carboxyl terminal of the XLRS1 protein beyond the discoidin domain. Mutations in 25 of the families were localized to exons 4–6, emphasizing the critical functional significance of the discoidin domain of the XLRS1 protein. Hum Mutat 14:423–427, 1999.


Experimental Eye Research | 2009

Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin

Vidyullatha Vasireddy; Monica M. Jablonski; Naheed W. Khan; Xiao Fei Wang; Priya Sahu; Janet R. Sparrow; Radha Ayyagari

The mechanism underlying photoreceptor degeneration in autosomal dominant Stargardt-like macular degeneration (STGD3) due to mutations in the elongation of very long chain fatty acids-4 (ELOVL4) gene is not fully understood. To evaluate the pathological events associated with STGD3, we used a mouse model that mimics the human STGD3 phenotype and studied the progression of retinal degeneration. Morphological changes in the retina of Elovl4 5-bp deletion knock-in mice (E_mut(+/-)) were evaluated at 22 months of age. The localization of ELOVL4, and the expression pattern of inner retinal tissue marker proteins, and ubiquitin were determined by immunofluorescence labeling of retinal sections. Levels of the retinal pigment epithelium (RPE) lipofuscin fluorophores were measured by quantitative HPLC. Morphological evaluation of the retina revealed an accumulation of RPE debris in the subretinal space. A significant increase in the amount of ELOVL4 was observed in the outer plexiform layer in E_mut(+/-) mice compared to controls. Apart from the accumulation of ELOVL4, E_mut(+/-) mice also exhibited high expression of ubiquitin in the retina. Analysis of lipofuscin fluorophores in the RPE showed a significant elevation of A2E and compounds of the all-trans-retinal dimer series in retinas from four and ten month old E_mut(+/-) mice compared to wild-type littermates. These observations suggest that abnormal accumulation of ELOVL4 protein and lipofuscin may lead to photoreceptor degeneration in E_mut(+/-) mice.


Investigative Ophthalmology & Visual Science | 2012

Retinal Phenotypes in Patients Homozygous for the G1961E Mutation in the ABCA4 Gene

Tomas R. Burke; Gerald A. Fishman; Jana Zernant; Carl Schubert; Stephen H. Tsang; R. T. Smith; Radha Ayyagari; Robert K. Koenekoop; Allison Umfress; Maria Laura Ciccarelli; Alfonso Baldi; Alessandro Iannaccone; Frans P.M. Cremers; C. C. W. Klaver; Rando Allikmets

PURPOSE We evaluated the pathogenicity of the G1961E mutation in the ABCA4 gene, and present the range of retinal phenotypes associated with this mutation in homozygosity in a patient cohort with ABCA4-associated phenotypes. METHODS Patients were enrolled from the ABCA4 disease database at Columbia University or by inquiry from collaborating physicians. Only patients homozygous for the G1961E mutation were enrolled. The entire ABCA4 gene open reading frame, including all exons and flanking intronic sequences, was sequenced in all patients. Phenotype data were obtained from clinical history and examination, fundus photography, infrared imaging, fundus autofluorescence, fluorescein angiography, and spectral domain-optical coherence tomography. Additional functional data were obtained using the full-field electroretinogram, and static or kinetic perimetry. RESULTS We evaluated 12 patients homozygous for the G1961E mutation. All patients had evidence of retinal pathology consistent with the range of phenotypes observed in ABCA4 disease. The latest age of onset was recorded at 64 years, in a patient diagnosed initially with age-related macular degeneration (AMD). Of 6 patients in whom severe structural (with/without functional) fundus changes were detected, 5 had additional, heterozygous or homozygous, variants detected in the ABCA4 gene. CONCLUSIONS Homozygous G1961E mutation in ABCA4 results in a range of retinal pathology. The phenotype usually is at the milder end of the disease spectrum, with severe phenotypes linked to the presence of additional ABCA4 variants. Our report also highlights that milder, late-onset Stargardt disease may be confused with AMD.

Collaboration


Dive into the Radha Ayyagari's collaboration.

Top Co-Authors

Avatar

Paul A. Sieving

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pooja Biswas

University of California

View shared research outputs
Top Co-Authors

Avatar

S. Amer Riazuddin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica M. Jablonski

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

John Suk

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge