Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Moschioni is active.

Publication


Featured researches published by Monica Moschioni.


The Journal of Infectious Diseases | 2008

Streptococcus pneumoniae Contains 3 rlrA Pilus Variants That Are Clonally Related

Monica Moschioni; Claudio Donati; Alessandro Muzzi; Vega Masignani; Stefano Censini; William P. Hanage; Cynthia J. Bishop; Joice Neves Reis; Staffan Normark; Birgitta Henriques-Normark; Antonello Covacci; Rino Rappuoli; Michèle A. Barocchi

BACKGROUNDnPilus components of Streptococcus pneumoniae encoded by rlrA were recently shown to elicit protection in an animal model of infection. Limited data are available on the prevalence of the rlrA operon in pneumococci; therefore, we investigated its distribution and its antigenic variation among disease-causing strains.nnnMETHODSnThe prevalence of rlrA and its association with serotype and genotype were evaluated in a global panel of 424 pneumococci isolates (including the 26 drug-resistant clones described by the Pneumococcal Molecular Epidemiology Network).nnnRESULTSnThe rlrA islet was found in 130 isolates (30.6%) of the defined collection. Sequence alignment of 15 rlrA islets defined the presence of 3 clade types, with an overall homology of 88%-92%. The presence or absence of a pilus-encoding operon correlated with S. pneumoniae genotype (P < .001), as determined by multilocus sequence typing, and not with serotype. Further investigation identified a positive trend of rlrA occurrence among antimicrobial-resistant pneumococci.nnnCONCLUSIONSnOn the basis of S. pneumoniae genotype, it is possible to predict the incidence of the rlrA pilus operon in a collection of pneumococcal isolates. This will facilitate the development of a protein vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Clonal success of piliated penicillin nonsusceptible pneumococci

Karin Sjöström; Christel Blomberg; Jenny Fernebro; Jessica Dagerhamn; Eva Morfeldt; Michèle A. Barocchi; Sarah Browall; Monica Moschioni; Mats Andersson; F. Henriques; Barbara Albiger; Rino Rappuoli; Staffan Normark; Birgitta Henriques-Normark

Antibiotic resistance in pneumococci is due to the spread of strains belonging to a limited number of clones. The Spain9V-3 clone of sequence type (ST)156 is one of the most successful clones with reduced susceptibility to penicillin [pneumococci nonsusceptible to penicillin (PNSP)]. In Sweden during 2000–2003, a dramatic increase in the number of PNSP isolates was observed. Molecular characterization of these isolates showed that a single clone of sequence type ST156 increased from 40% to 80% of all serotype 14, thus causing the serotype expansion. Additionally, during the same time period, we examined the clonal composition of two serotypes 9V and 19F: all 9V and 20% of 19F isolates belonged to the clonal cluster of ST156, and overall ≈50% of all PNSP belonged to the ST156 clonal cluster. Moreover, microarray and PCR analysis showed that all ST156 isolates, irrespective of capsular type, carried the rlrA pilus islet. This islet was also found to be present in the penicillin-sensitive ST162 clone, which is believed to be the drug-susceptible ancestor of ST156. Competitive experiments between related ST156 serotype 19F strains confirmed that those containing the rlrA pilus islet were more successful in an animal model of carriage. We conclude that the pilus island is an important biological factor common to ST156 isolates and other successful PNSP clones. In Sweden, a country where the low antibiotic usage does not explain the spread of resistant strains, at least 70% of all PNSP isolates collected during year 2003 carried the pilus islet.


PLOS ONE | 2011

The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern.

Gabriella De Angelis; Monica Moschioni; Alessandro Muzzi; Alfredo Pezzicoli; Stefano Censini; Isabel Delany; Morena Lo Sapio; Antonia Sinisi; Claudio Donati; Vega Masignani; Michèle A. Barocchi

The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus.


Infection and Immunity | 2012

RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies.

Carole Harfouche; Sara Filippini; Claudia Gianfaldoni; Paolo Ruggiero; Monica Moschioni; Silvia Maccari; Laura Pancotto; Letizia Arcidiacono; Bruno Galletti; Stefano Censini; Elena Mori; Marzia Monica Giuliani; Claudia Facciotti; Elena Cartocci; Silvana Savino; Francesco Doro; Michele Pallaoro; Salvatore Nocadello; Giuseppe Mancuso; Mitch Haston; David Goldblatt; Michèle A. Barocchi; Mariagrazia Pizza; Rino Rappuoli; Vega Masignani

ABSTRACT Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.


Journal of Infection | 2008

Transmission of Streptococcus pneumoniae in an urban slum community

Joice Neves Reis; Tania Palma; Guilherme S. Ribeiro; Ricardo M. Pinheiro; Cássio T. Ribeiro; Soraia Machado Cordeiro; H.P. da Silva Filho; Monica Moschioni; Terry A. Thompson; Brian G. Spratt; Lee W. Riley; Michèle A. Barocchi; Mitermayer G. Reis; Albert I. Ko

BACKGROUNDnInhabitants of slum settlements represent a significant proportion of the population at risk for pneumococcal disease in developing countries.nnnMETHODSnWe conducted a household survey of pneumococcal carriage among residents of a slum community in the city of Salvador, Brazil.nnnRESULTSnAmong 262 subjects, 95 (36%) were colonized with Streptococcus pneumoniae. Children <5 years of age (OR, 8.0; 95% CI, 3.5-18.6) and those who attended schools (OR, 2.7, 95% CI, 1.2-6.0) had significantly higher risk of being colonized. Of 94 isolates obtained from colonized individuals, 51% had serotypes included in the seven-valent pneumococcal conjugate vaccine. Overall, 10% (9 of 94 isolates) were nonsusceptible to penicillin and 28% (27 of 94 isolates) were resistant to cotrimoxazole. BOX-PCR, PFGE and MLST analyses found that 44% of the carriage isolates belonged to 14 distinct clonal groups. Strains of the same clonal group were isolated from multiple members of 9 out of the 39 study households. Nineteen carriage isolates had genotypes that were the same as those identified among 362 strains obtained from active surveillance for meningitis.nnnCONCLUSIONSnThe studys findings indicate that there is significant intra- and inter-household spread of S. pneumoniae in the slum community setting. However, a limited number of clones encountered during carriage among slum residents were found to cause invasive disease.


Biochemical Journal | 2012

The full-length Streptococcus pneumoniae major pilin RrgB crystallizes in a fibre-like structure, which presents the D1 isopeptide bond and provides details on the mechanism of pilus polymerization.

Lamya El Mortaji; Carlos Contreras-Martel; Monica Moschioni; Ilaria Ferlenghi; Clothilde Manzano; Thierry Vernet; Andréa Dessen; Anne Marie Di Guilmi

RrgB is the major pilin which forms the pneumococcal pilus backbone. We report the high-resolution crystal structure of the full-length form of RrgB containing the IPQTG sorting motif. The RrgB fold is organized into four distinct domains, D1-D4, each of which is stabilized by an isopeptide bond. Crystal packing revealed a head-to-tail organization involving the interaction of the IPQTG motif into the D1 domain of two successive RrgB monomers. This fibrillar assembly, which fits into the electron microscopy density map of the native pilus, probably induces the formation of the D1 isopeptide bond as observed for the first time in the present study, since neither in published structures nor in soluble RrgB produced in Escherichia coli or in Streptococcus pneumoniae is the D1 bond present. Experiments performed in live bacteria confirmed that the intermolecular bond linking the RrgB subunits takes place between the IPQTG motif of one RrgB subunit and the Lys183 pilin motif residue of an adjacent RrgB subunit. In addition, we present data indicating that the D1 isopeptide bond is involved in RrgB stabilization. In conclusion, the crystal RrgB fibre is a compelling model for deciphering the molecular details required to generate the pneumococcal pilus.


Vaccine | 2012

Immunization with the RrgB321 fusion protein protects mice against both high and low pilus-expressing Streptococcus pneumoniae populations

Monica Moschioni; Gabriella De Angelis; Carole Harfouche; Esmeralda Bizzarri; Sara Filippini; Elena Mori; Giuseppe Mancuso; Francesco Doro; Michèle A. Barocchi; Paolo Ruggiero; Vega Masignani

RrgB321, a fusion protein of the three Streptococcus pneumoniae pilus-1 backbone RrgB variants, is protective in vivo against pilus islet 1 (PI-1) positive pneumococci. In addition, antibodies to RrgB321 mediate a complement-dependent opsonophagocytosis of PI-1 positive strains at levels comparable to those obtained with antisera against glycoconjugate vaccines. In the pneumococcus, pilus-1 displays a biphasic expression pattern, with different proportions of two bacterial phenotypes, one expressing and one not expressing the pilus-1. These two populations can be stably separated in vitro giving rise to the enriched high (H) and low (L) pilus expressing populations. In this work we demonstrate that: (i) the opsonophagocytic killing mediated in vitro by RrgB321 antisera is strictly dependent on the pilus expression ratio of the strain used; (ii) during the opsonophagocytosis assay pilus-expressing pneumococci are selectively killed, and (iii) no switch towards the pilus non-expressing phenotype can be observed. Furthermore, in sepsis and pneumonia models, mice immunized with RrgB321 are significantly protected against challenge with either the H or the L pilus-expressing population of strains representative of the three RrgB variants. This suggests that the pilus-1 expression is not down-regulated, and also that the expression of the pilus-1 could be up-regulated in vivo. In conclusion, these data provide evidence that RrgB321 is protective against PI-1 positive strains regardless of their pilus expression level, and support the rationale for the inclusion of this fusion protein into a multi-component protein-based pneumococcal vaccine.


Microbial Biotechnology | 2009

Adhesion determinants of the Streptococcus species

Monica Moschioni; Werner Pansegrau; Michèle A. Barocchi

Streptococci are clinically important Gram‐positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to host tissues is the initial critical event in the pathogenesis of most infections. Streptococci use multiple adhesins to attach to the epithelium, and their expression is regulated in response to environmental and growth conditions. Bacterial adhesins recognize and bind cell surface molecules and extracellular matrix components through specific domains that for certain adhesin families have been well defined and found conserved across the streptococcal species. In this review, we present the different streptococcal adhesin families categorized on the basis of their adhesive properties and structural characteristics, and, when available, we focus the attention on conserved functional domains.


PLOS ONE | 2008

Pilus Operon Evolution in Streptococcus pneumoniae Is Driven by Positive Selection and Recombination

Alessandro Muzzi; Monica Moschioni; Antonello Covacci; Rino Rappuoli; Claudio Donati

Background The evolution of bacterial organelles involved in host-pathogen interactions is subject to intense and competing selective pressures due to the need to maintain function while escaping the host immune response. To characterize the interplay of these forces in an important pathogen, we sequenced the rlrA islet, a chromosomal region encoding for a pilus-like structure involved in adherence to lung epithelial cells in vitro and in colonization in a murine model of infection, in 44 clinical isolates of Streptococcus pneumoniae. Results We found that the rrgA and rrgB genes, encoding the main structural components of the pilus, are under the action of positive selection. In contrast, the rrgC gene, coding for a component present in low quantities in the assembled pilus, and the srtB, srtC and srtD genes, coding for three sortase enzymes essential for pilus assembly but probably not directly exposed to the host immune system, show no evidence of positive selection. We found several events of homologous recombination in the region containing these genes, identifying 4 major recombination hotspots. An analysis of the most recent recombination events shows a high level of mosaicism of the region coding for the rrgC, srtB, srtC and srtD genes. Conclusions In the rlrA islet, the genes coding for proteins directly exposed to the host immune response are under the action of positive selection, and exist in distinct forms in the population of circulating strains. The genes coding for proteins not directly exposed on the surface of the bacterial cell are more conserved probably due to the homogenizing effect of recombination.


Infection, Genetics and Evolution | 2013

An extended multi-locus molecular typing schema for Streptococcus pneumoniae demonstrates that a limited number of capsular switch events is responsible for serotype heterogeneity of closely related strains from different countries.

Giovanni Crisafulli; Silvia Guidotti; Alessandro Muzzi; Giulia Torricelli; Monica Moschioni; Vega Masignani; Stefano Censini; Claudio Donati

Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Pneumococcal strains are classified according to their capsular serotype and through a Multi-Locus Sequence Typing schema (MLST) based on the sequencing of seven housekeeping genes. However, strains with a defined allelic profile (Sequence Type, ST) can have different serotypes, suggesting that the micro-evolution of the MLST lineages leads to a considerable degree of phenotypic variability. To better investigate the genetic diversity within these lineages, we set-up and then validated an extended molecular typing schema (96-MLST) based on the sequencing of ninety-six genomic loci. 96-MLST loci were designed within core-genes in a collection of 39 complete genomes of S. pneumoniae. None of the capsular genes was included in the schema. When tested on a collection of 69 isolates, 96-MLST was able to partition strains with the same ST and diverse serotypes into groups that were homogenous for capsular serotype, improving our understanding of the evolution of epidemiologically relevant lineages. Phylogenetic sequence analysis showed that the capsular heterogeneity of three STs that were sampled more extensively could be traced back to a limited number of capsular switch events, indicating that changes of serotype occur occasionally during the short term expansion of clones. Moreover, a geographical structure of ST156 was identified, suggesting that the resolution guaranteed by this method is sufficient for phylogeographic studies. In conclusion, we showed that an extended typing schema was able to characterize the expansion of individual lineages in a complex species such as S. pneumoniae.

Collaboration


Dive into the Monica Moschioni's collaboration.

Researchain Logo
Decentralizing Knowledge