Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Muzzi is active.

Publication


Featured researches published by Alessandro Muzzi.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular and cellular signatures of human vaccine adjuvants.

F. Mosca; Elaine Tritto; Alessandro Muzzi; Elisabetta Monaci; Fabio Bagnoli; C. Iavarone; Derek O'hagan; Rino Rappuoli; E. De Gregorio

Oil-in-water emulsions are potent human adjuvants used for effective pandemic influenza vaccines; however, their mechanism of action is still unknown. By combining microarray and immunofluorescence analysis, we monitored the effects of the adjuvants MF59 oil-in-water emulsion, CpG, and alum in the mouse muscle. MF59 induced a time-dependent change in the expression of 891 genes, whereas CpG and alum regulated 387 and 312 genes, respectively. All adjuvants modulated a common set of 168 genes and promoted antigen-presenting cell recruitment. MF59 was the stronger inducer of cytokines, cytokine receptors, adhesion molecules involved in leukocyte migration, and antigen-presentation genes. In addition, MF59 triggered a more rapid influx of CD11b+ blood cells compared with other adjuvants. The early biomarkers selected by microarray, JunB and Ptx3, were used to identify skeletal muscle as a direct target of MF59. We propose that oil-in-water emulsions are the most efficient human vaccine adjuvants, because they induce an early and strong immunocompetent environment at the injection site by targeting muscle cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines

John Donnelly; Ducci O. Medini; Giusepp E. Boccadifuoco; Alessia Biolchi; Joel I. Ward; Carl E. Frasch; E. Richard Moxon; Maria Stella; Maurizio Comanducci; Stefania Bambini; Alessandro Muzzi; William H. Andrews; Jie Chen; George W. Santos; Laura Santini; Philip Boucher; Davide Serruto; Mariagrazia Pizza; Rino Rappuoli; Marzia Monica Giuliani

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Genome Biology | 2010

Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

Claudio Donati; N. Luisa Hiller; Hervé Tettelin; Alessandro Muzzi; Nicholas J. Croucher; Samuel V. Angiuoli; Marco R. Oggioni; Julie C. Dunning Hotopp; Fen Z. Hu; David R. Riley; Antonello Covacci; Timothy J. Mitchell; Stephen D. Bentley; Morgens Kilian; Garth D. Ehrlich; Rino Rappuoli; E. Richard Moxon; Vega Masignani

BackgroundStreptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.ResultsDespite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence.ConclusionsGenetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.


Nature Biotechnology | 2002

Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays

Renata Grifantini; Erika Bartolini; Alessandro Muzzi; Monia Draghi; Elisabetta Frigimelica; Joel Berger; Giulio Ratti; Roberto Petracca; Giuliano Galli; Mauro Agnusdei; Marzia Monica Giuliani; Laura Santini; Brunella Brunelli; Hervé Tettelin; Rino Rappuoli; Filippo Randazzo; Guido Grandi

We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids. Approximately 40% of the 189 upregulated genes coded for peripherally located proteins, suggesting that cell contact promoted a substantial reorganization of the cell membrane. This was confirmed by fluorescence activated cell sorting (FACS) analysis on adhering bacteria using mouse sera against twelve adhesion-induced proteins. Of the 12 adhesion-induced surface antigens, 5 were able to induce bactericidal antibodies in mice, demonstrating that microarray technology is a valid approach for identifying new vaccine candidates and nicely complements other genome mining strategies used for vaccine discovery.


Lancet Infectious Diseases | 2013

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.

Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli

BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B

Renata Grifantini; Shite Sebastian; Elisabetta Frigimelica; Monia Draghi; Erika Bartolini; Alessandro Muzzi; Rino Rappuoli; Guido Grandi; Caroline Attardo Genco

Iron is limiting in the human host, and bacterial pathogens respond to this environment by activating genes required for bacterial virulence. Transcriptional regulation in response to iron in Gram-negative bacteria is largely mediated by the ferric uptake regulator protein Fur, which in the presence of iron binds to a specific sequence in the promoter regions of genes under its control and acts as a repressor. Here we describe DNA microarray, computational and in vitro studies to define the Fur regulon in the human pathogen Neisseria meningitidis group B (strain MC58). After iron addition to an iron-depleted bacterial culture, 153 genes were up-regulated and 80 were down-regulated. Only 50% of the iron-regulated genes were found to contain Fur-binding consensus sequences in their promoter regions. Forty-two promoter regions were amplified and 32 of these were shown to bind Fur by gel-shift analysis. Among these genes, many of which had never been described before to be Fur-regulated, 10 were up-regulated on iron addition, demonstrating that Fur can also act as a transcriptional activator. Sequence alignment of the Fur-binding regions revealed that the N. meningitidis Fur-box encompasses the highly conserved (NATWAT)3 motif. Cluster analysis was effective in predicting Fur-regulated genes even if computer prediction failed to identify Fur-box-like sequences in their promoter regions. Microarray-generated gene expression profiling appears to be a very effective approach to define new regulons and regulatory pathways in pathogenic bacteria.


Journal of Bacteriology | 2008

A Second Pilus Type in Streptococcus pneumoniae Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells

Fabio Bagnoli; Monica Moschioni; Claudio Donati; Valentina Dimitrovska; Ilaria Ferlenghi; Claudia Facciotti; Alessandro Muzzi; Fabiola Giusti; Carla Emolo; Antonella Sinisi; Markus Hilleringmann; Werner Pansegrau; Stefano Censini; Rino Rappuoli; Antonello Covacci; Vega Masignani; Michèle A. Barocchi

Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. Presence of PI-2 correlates with the genotype as defined by multilocus sequence typing and clonal complex (CC). The PI-2-positive CCs are associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging serotypes in both industrialized and developing countries. Interestingly, strains belonging to CC271 (where sequence type 271 is the predicted founder of the CC) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that play a role in the initial host cell contact to the respiratory tract and are potential antigens for inclusion in a new generation of pneumococcal vaccines.


Vaccine | 2009

Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus

Stefania Bambini; Alessandro Muzzi; Per Olcén; Rino Rappuoli; Mariagrazia Pizza; Maurizio Comanducci

With the aim of studying the molecular diversity of the antigens of a new recombinant vaccine against meningococcus serogroup B, the three genes coding for the main vaccine components GNA (Genome-derived Neisseria Antigen) 1870 (fHbp, factor H Binding Protein), GNA1994 (NadA, Neisseria adhesin A) and GNA2132 were sequenced in a panel of 85 strains collected worldwide and selected as representative of the serogroup B meningococcal diversity. No correlations were found between vaccine antigen variability and serogroup, geographic area and year of isolation. Although a relevant clustering was found with MLST clonal complexes, each showing an almost specific antigen variant repertoire, the prediction of the antigen assortment was not possible on the basis of MLST alone. Therefore, classification of meningococcus on the basis of MLST only is not sufficient to predict vaccine antigens diversity. Sequencing each gene in the different strains will be important to evaluate antigen conservation and assortment and to allow a future prediction of potential vaccine coverage.


PLOS Pathogens | 2011

Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival.

Hebert Echenique-Rivera; Alessandro Muzzi; Elena Del Tordello; Kate L. Seib; Patrice Francois; Rino Rappuoli; Mariagrazia Pizza; Davide Serruto

During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.


The Journal of Infectious Diseases | 2008

Streptococcus pneumoniae Contains 3 rlrA Pilus Variants That Are Clonally Related

Monica Moschioni; Claudio Donati; Alessandro Muzzi; Vega Masignani; Stefano Censini; William P. Hanage; Cynthia J. Bishop; Joice Neves Reis; Staffan Normark; Birgitta Henriques-Normark; Antonello Covacci; Rino Rappuoli; Michèle A. Barocchi

BACKGROUND Pilus components of Streptococcus pneumoniae encoded by rlrA were recently shown to elicit protection in an animal model of infection. Limited data are available on the prevalence of the rlrA operon in pneumococci; therefore, we investigated its distribution and its antigenic variation among disease-causing strains. METHODS The prevalence of rlrA and its association with serotype and genotype were evaluated in a global panel of 424 pneumococci isolates (including the 26 drug-resistant clones described by the Pneumococcal Molecular Epidemiology Network). RESULTS The rlrA islet was found in 130 isolates (30.6%) of the defined collection. Sequence alignment of 15 rlrA islets defined the presence of 3 clade types, with an overall homology of 88%-92%. The presence or absence of a pilus-encoding operon correlated with S. pneumoniae genotype (P < .001), as determined by multilocus sequence typing, and not with serotype. Further investigation identified a positive trend of rlrA occurrence among antimicrobial-resistant pneumococci. CONCLUSIONS On the basis of S. pneumoniae genotype, it is possible to predict the incidence of the rlrA pilus operon in a collection of pneumococcal isolates. This will facilitate the development of a protein vaccine.

Collaboration


Dive into the Alessandro Muzzi's collaboration.

Researchain Logo
Decentralizing Knowledge