Mònica Sabater
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mònica Sabater.
PLOS ONE | 2010
Francisco Ortega; José María Moreno-Navarrete; Gerard Pardo; Mònica Sabater; Manuela Hummel; Anna Ferrer; José Ignacio Rodríguez-Hermosa; Bartomeu Ruiz; Wifredo Ricart; Belén Peral; José Manuel Fernández-Real
Background Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis. Methodology/Principal Findings We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation. Conclusions/Significance The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.
Clinical Chemistry | 2013
Francisco Ortega; Josep M. Mercader; Victoria Catalán; José María Moreno-Navarrete; Neus Pueyo; Mònica Sabater; Javier Gómez-Ambrosi; Roger Anglada; José Antonio Fernández-Formoso; Wifredo Ricart; Gema Frühbeck; José Manuel Fernández-Real
BACKGROUND Genomic studies have yielded important insights into the pathogenesis of obesity. Circulating microRNAs (miRNAs) are valuable biomarkers of systemic diseases and potential therapeutic targets. We sought to define the circulating pattern of miRNAs in obesity and examine changes after weight loss. METHODS We assessed the genomewide circulating miRNA profile cross-sectionally in 32 men and after surgery-induced weight loss in 6 morbidly obese patients. The most relevant miRNAs were cross-sectionally validated in 80 men and longitudinally in 22 patients (after surgery-induced weight loss). We evaluated the effects of diet-induced weight loss in 9 obese patients. Thirty-six circulating miRNAs were associated with anthropometric variables in the initial sample. RESULTS In the validation study, morbidly obese patients showed a marked increase of miR-140-5p, miR-142-3p (both P < 0.0001), and miR-222 (P = 0.0002) and decreased levels of miR-532-5p, miR-125b, miR-130b, miR-221, miR-15a, miR-423-5p, and miR-520c-3p (P < 0.0001 for all). Interestingly, in silico targets leukemia inhibitory factor receptor (LIFR) and transforming growth factor receptor (TGFR) of miR-140-5p, miR-142-3p, miR-15a, and miR-520c-3p circulated in association with their corresponding miRNAs. Moreover, a discriminant function of 3 miRNAs (miR-15a, miR-520c-3p, and miR-423-5p) was specific for morbid obesity, with an accuracy of 93.5%. Surgery-induced (but not diet-induced) weight loss led to a marked decrease of miR-140-5p, miR-122, miR-193a-5p, and miR-16-1 and upregulation of miR-221 and miR-199a-3p (P < 0.0001 for all). CONCLUSIONS Circulating miRNAs are deregulated in severe obesity. Weight loss-induced changes in this profile and the study of in silico targets support this observation and suggest a potential mechanistic relevance.
PLOS ONE | 2012
José María Moreno-Navarrete; Mònica Sabater; Francisco Ortega; Wifredo Ricart; José Manuel Fernández-Real
Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.
Obesity | 2011
José María Moreno-Navarrete; Francisco Ortega; Antoni Castro; Mònica Sabater; Wifredo Ricart; José Manuel Fernández-Real
Omentin is a novel soluble lectin expressed mainly in the stromal‐vascular cells from visceral adipose tissue with vasodilator effect in isolated blood vessels. To gain insight in the relationship between obesity and cardiovascular risk factors, we aimed to explore the interaction among circulating omentin, metabolic parameters, and endothelial function. Circulating omentin (enzyme‐linked immunosorbent assay) was studied in 248 white men (148 with normal glucose tolerance (NGT) and 100 with impaired glucose tolerance (IGT)). Insulin sensitivity was measured using the frequently sampled intravenous glucose tolerance test. Vascular reactivity was measured by high‐resolution ultrasound of the brachial artery. Circulating omentin concentration was significantly increased in lean compared with overweight and obese subjects (53.7 ± 16.9 vs. 45.2 ± 16.8 and vs. 40.1 ± 15.5 ng/ml, P < 0.0001). Circulating omentin concentration correlated with age, BMI, waist‐to‐hip ratio (WHR), percentage of fat mass, systolic and diastolic blood pressure, endothelium‐dependent and independent vasodilation (EDV and EIV), C‐reactive protein, and interleukin‐6 (IL‐6). In IGT subjects, circulating omentin concentration also correlated with insulin sensitivity, although this association did not remain significant after controlling for BMI. In a multiple linear regression analysis, circulating omentin concentration (P = 0.01), systolic blood pressure (P = 0.04), and BMI (P = 0.04) contributed independently to EDV after controlling for age and C‐reactive protein in IGT subjects. In NGT subjects, only circulating omentin concentration (P = 0.01) was significantly associated with EDV. In conclusion, circulating omentin concentration could be a useful marker of endothelial function.
The Journal of Clinical Endocrinology and Metabolism | 2010
Mònica Sabater; José María Moreno-Navarrete; Francisco Ortega; Gerard Pardo; Javier Salvador; Wifredo Ricart; Gema Frühbeck; José Manuel Fernández-Real
OBJECTIVE We aimed to study circulating pigment epithelium-derived factor (PEDF) in vivo in association with insulin resistance and in vitro in human adipocytes. METHODS Circulating PEDF (ELISA) and metabolic profile were assessed in 125 Caucasian men. PEDF levels were also assessed in an independent cohort of subjects (n = 33) to study the effects of changing insulin action. PEDF gene expression and secretion were measured during differentiation of human preadipocytes. RESULTS In all subjects, PEDF was positively associated with body mass index (r = 0.326; P < 0.0001), waist-to-hip ratio (r = 0.380; P < 0.0001), HbA(1c), and fasting triglycerides and negatively with insulin sensitivity (r = -0.320; P < 0.0001). PEDF levels were significantly increased in subjects with altered glucose tolerance and type 2 diabetes. Of the inflammatory markers measured, PEDF levels were positively associated with serum soluble TNF-α receptor 1 and IL-10 in obese subjects. Interestingly, weight loss led to significantly decreased PEDF concentration from 34.8 ± 19.3 to 22.5 ± 14.2 μg/ml (P < 0.0001). Multiple linear regression analyses revealed that insulin sensitivity contributed independently to explain 14% of the variance in PEDF levels after controlling for the effects of body mass index, age, and log fasting triglycerides. Differences in PEDF observed after weight loss were related to changes in obesity, insulin resistance, and blood pressure measures. PEDF gene expression and secretion increased during differentiation of human preadipocytes. CONCLUSION Circulating PEDF is associated with insulin sensitivity. The findings show, for the first time in humans, that PEDF concentrations decrease significantly after weight loss in association with blood pressure. PEDF seems to be involved in human adipocyte biology.
Diabetes | 2011
José María Moreno-Navarrete; Francisco Ortega; José-Ignacio Rodríguez-Hermosa; Mònica Sabater; Gerard Pardo; Wifredo Ricart; José Manuel Fernández-Real
OBJECTIVE Metformin has been well characterized in vitro as a substrate of liver-expressed organic cation transporters (OCTs). We investigated the gene expression and protein levels of OCT-1 and OCT-2 in adipose tissue and during adipogenesis and evaluated their possible role in metformin action on adipocytes. RESEARCH DESIGN AND METHODS OCT1 and OCT2 gene expressions were analyzed in 118 adipose tissue samples (57 visceral and 61 subcutaneous depots) and during human preadipocyte differentiation. To test the possible role of OCT1 mediating the response of adipocytes to metformin, cotreatments with cimetidine (OCT blocker, 0.5 and 5 mmol/l) and metformin were made on human preadipocytes and subcutaneous adipose tissue (SAT). RESULTS OCT1 gene was expressed in both subcutaneous and visceral adipose tissue. In both fat depots, OCT1 gene expression and protein levels were significantly increased in obese subjects. OCT1 gene expression in isolated preadipocytes significantly increased during differentiation in parallel to adipogenic genes. Metformin (5 mmol/l) decreased the expression of lipogenic genes and lipid droplets accumulation while increasing AMP-activated protein kinase (AMPK) activation, preventing differentiation of human preadipocytes. Cotreatment with cimetidine restored adipogenesis. Furthermore, metformin decreased IL-6 and MCP-1 gene expression in comparison with differentiated adipocytes. Metformin (0.1 and 1 mmol/l) decreased adipogenic and inflammatory genes in SAT. OCT2 gene expression was not detected in adipose tissue and was very small in isolated preadipocytes, disappearing during adipogenesis. CONCLUSIONS OCT1 gene expression and protein levels are detectable in adipose tissue. Increased OCT1 gene expression in adipose tissue of obese subjects might contribute to increased metformin action in these subjects.
Diabetes | 2010
José María Moreno-Navarrete; Rubén Martínez-Barricarte; Victoria Catalán; Mònica Sabater; Javier Gómez-Ambrosi; Francisco Ortega; Wifredo Ricart; Mathias Blüher; Gema Frühbeck; Santiago Rodríguez de Córdoba; José Manuel Fernández-Real
OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.
Diabetologia | 2013
José María Moreno-Navarrete; Xavier Escoté; Francisco B. Ortega; Matteo Serino; Mark Campbell; Marie-Caroline Michalski; Martine Laville; Elodie Luche; Pere Domingo; Mònica Sabater; Gerard Pardo; Aurélie Waget; Javier Salvador; Marta Giralt; José Ignacio Rodríguez-Hermosa; Marta Camps; Catherine I. Kolditz; Nathalie Viguerie; Jean Galitzky; Pauline Decaunes; Wifredo Ricart; Gema Frühbeck; Francesc Villarroya; Geltrude Mingrone; Dominique Langin; Antonio Zorzano; Hubert Vidal; Joan Vendrell; Rémy Burcelin; Antonio Vidal-Puig
Aims/hypothesisCirculating lipopolysaccharide-binding protein (LBP) is an acute-phase reactant known to be increased in obesity. We hypothesised that LBP is produced by adipose tissue (AT) in association with obesity.MethodsLBP mRNA and LBP protein levels were analysed in AT from three cross-sectional (n = 210, n = 144 and n = 28) and three longitudinal (n = 8, n = 25, n = 20) human cohorts; in AT from genetically manipulated mice; in isolated adipocytes; and in human and murine cell lines. The effects of a high-fat diet and exposure to lipopolysaccharide (LPS) and peroxisome proliferator-activated receptor (PPAR)γ agonist were explored. Functional in vitro and ex vivo experiments were also performed.ResultsLBP synthesis and release was demonstrated to increase with adipocyte differentiation in human and mouse AT, isolated adipocytes and human and mouse cell lines (Simpson–Golabi–Behmel syndrome [SGBS], human multipotent adipose-derived stem [hMAD] and 3T3-L1 cells). AT LBP expression was robustly associated with inflammatory markers and increased with metabolic deterioration and insulin resistance in two independent cross-sectional human cohorts. AT LBP also increased longitudinally with weight gain and excessive fat accretion in both humans and mice, and decreased with weight loss (in two other independent cohorts), in humans with acquired lipodystrophy, and after ex vivo exposure to PPARγ agonist. Inflammatory agents such as LPS and TNF-α led to increased AT LBP expression in vivo in mice and in vitro, while this effect was prevented in Cd14-knockout mice. Functionally, LBP knockdown using short hairpin (sh)RNA or anti-LBP antibody led to increases in markers of adipogenesis and decreased adipocyte inflammation in human adipocytes.Conclusions/interpretationCollectively, these findings suggest that LBP might have an essential role in inflammation- and obesity-associated AT dysfunction.
Clinical Epigenetics | 2015
Francisco Ortega; María Moreno; Josep M. Mercader; José María Moreno-Navarrete; Núria Fuentes-Batllevell; Mònica Sabater; Wifredo Ricart; José Manuel Fernández-Real
BackgroundThe relevance of microRNAs (miRNAs) in adipose tissue is increasingly recognized, being intrinsically linked to different pathways, including obesity-related inflammation. In this study, we aimed to characterize the changes induced by inflammation on the miRNA pattern of human adipocytes and macrophages. Therefore, an extensive profile of 754 common miRNAs was assessed in cells (human primary mature adipocytes, and the macrophage-like cell line THP-1) and in their supernatants (SN) using TaqMan low-density arrays. These profiles were evaluated at the baseline and after administration of lipopolysaccharide (LPS, 10 ng/ml) and LPS-conditioned medium from M1 macrophages (MCM, 5%). The miRNAs that experienced the most dramatic changes were studied in subcutaneous human adipose tissue before and approximately 2 years after bariatric surgery-induced weight loss.ResultsDifferentiated adipocytes expressed 169 miRNAs, being 85 detectable in the SN. In M1 macrophages, 183 miRNAs were detected, being 106 also present in the SN. Inflammation led to an increased number of miRNAs detectable in cells and in their SNs in both adipocytes (+8.3% and +24.7%) and M1 macrophages (+1.4% and +5%, respectively). Indeed, under inflammatory conditions, adipocytes and M1 macrophages shared the expression of 147 (+9%) miRNAs, and 100 (+41%) common miRNAs were found in their SNs. Twelve of these factors were also linked to inflammation in whole adipose tissue from obese subjects. Interestingly, miR-221 (2-fold, P = 0.002), miR-222 (2.5-fold, P = 0.04), and miR-155 (5-fold, P = 0.015) were increased in inflamed adipocytes and in their SNs (15-, 6-, and 4-fold, respectively, all P < 0.001). Furthermore, their expressions in human adipose tissue concordantly decreased after weight loss (−51%, P = 0.003, −49%, P = 0.03, and −54.4%, P = 0.005, respectively).ConclusionsInflammation induces a specific miRNA pattern in adipocytes and M1 macrophages, with impact on the physiopathology of obesity-induced inflammation of adipose tissue. The crosstalk between cells should be investigated further.
International Journal of Obesity | 2010
José María Moreno-Navarrete; F Ortega; Mònica Sabater; W Ricart; José Manuel Fernández-Real
Obesity and increased fat mass are associated with increased adipocyte proliferation. Telomere length can serve as a biomarker of a cells biological (vs chronological) age. To gain insight in the physiology of adipose tissue, we aimed to investigate telomere length in subcutaneous adipose tissue in relation to age and obesity. Telomere length was measured in 72 subcutaneous adipose tissue samples from 21 nonobese and 51 obese subjects. Telomere length of subcutaneous adipose tissue cells was negatively associated with body mass index (BMI), systolic blood pressure and fasting triglycerides. After controlling for age, fasting glucose, triglycerides and smoking status, BMI (P=0.009) contributed independently to 16% of telomere length variance. Interestingly, formerly obese patients (n=10) had shorter telomere length than never-obese subjects (n=12) of similar age, sex and BMI (7.1±1.3 vs 9.08±1.8 kb, P=0.01). In summary, adipose tissue cells from obese subjects show a shorter telomere length. The shorter telomere length of formerly obese subjects suggests that this is an established, irreversible feature of obesity that could contribute to its comorbidities.