Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Savio is active.

Publication


Featured researches published by Monica Savio.


Mutation Research-reviews in Mutation Research | 2010

Multiple roles of the cell cycle inhibitor p21CDKN1A in the DNA damage response

Ornella Cazzalini; A.Ivana Scovassi; Monica Savio; Lucia Anna Stivala; Ennio Prosperi

Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2003

Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells.

Maria Claudia Lazzè; Roberto Pizzala; Monica Savio; Lucia Anna Stivala; E. Prosperi; Livia Bianchi

Anthocyanins are flavonoids present in a variety of pigmented food and, like other flavonoids, seem to play a role in preventing human pathologies related to oxidative stress. In fact, anthocyanins have been shown to exert antiproliferative effects in cell cultures and exhibit antiinflammatory and vasoprotective activities in animal models. Although these biological activities have been related to their antioxidant properties, little is known on the molecular mechanism of action of anthocyanins. The effects of pretreatment with the anthocyanins delphinidin, cyanidin, and their glycoside and rutinoside derivatives against induction of DNA damage induced by tert-butyl-hydroperoxide (TBHP) were evaluated in rat smooth muscle and in rat hepatoma cell lines using alkaline single cell gel electrophoresis (Comet test). In addition, a possible protection exerted by anthocyanins on cell killing, lipid peroxidation, and redox state alterations induced by TBHP was also investigated. It was found that the treatment with TBHP induces the formation of DNA single strand breaks (SSB) and oxidised bases, along with cell killing, lipid peroxidation and redox state alteration. Our data demonstrate that anthocyanins are effective against cytotoxicity, DNA SSB formation and lipid peroxidation induced by TBHP, but they do not have any detectable effect against impairment by TBHP of cellular redox state and on protection against DNA bases oxidation. The presence of a sugar moiety in anthocyanin derivatives reduced this protective effect, mainly in rat hepatoma cells. The different activity of anthocyanins and their derivatives may be explained taking into account a structure/function relationship that could also influence anthocyanin intracellular localisation.


Journal of Biological Chemistry | 2003

Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners

Isabelle Frouin; Giovanni Maga; Marco Denegri; Federica Riva; Monica Savio; Silvio Spadari; Ennio Prosperi; A.Ivana Scovassi

We addressed the analysis of the physical and functional association of proliferating cell nuclear antigen (PCNA), a protein involved in many DNA transactions, with poly(ADP-ribose) polymerase (PARP-1), an enzyme that plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. We demonstrated that PARP-1 and PCNA co-immunoprecipitated both from the soluble and the DNA-bound fraction isolated from S-phase-synchronized HeLa cells. Immunoprecipitation experiments with purified proteins further confirmed a physical association between PARP-1 and PCNA. To investigate the effect of this association on PARP-1 activity, an assay based on the incorporation of radioactive NAD was performed. Conversely, the effect of PARP-1 on PCNA-dependent DNA synthesis was assessed by a DNA polymerase δ assay. A marked inhibition of both reactions was found. Unexpectedly, PARP-1 activity also decreased in the presence of p21waf1/cip1. By pull-down experiments, we provided the first evidence for an association between PARP-1 and p21, which involves the C-terminal part of p21 protein. This association was further demonstrated to occur also in vivo in MNNG (N-methyl-N′-nitro-N-nitrosoguanidine)-treated human fibroblasts. These observations suggest that PARP-1 and p21 could cooperate in regulating the functions of PCNA during DNA replication/repair.


Cell Cycle | 2009

Loss of p21CDKN1A impairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence

Paola Perucca; Ornella Cazzalini; Mark Madine; Monica Savio; Ronal Alfred Laskey; Vanio Vannini; Ennio Prosperi; Lucia Anna Stivala

The cell cycle inhibitor p21CDKN1A induces cell cycle arrest under different conditions, including senescence and terminal differentiation. Still debated is its involvement in the reversible transition from proliferation to a non-dividing quiescent state (G0), in which a significant role has been attributed to cell cycle inhibitor p27CDKN1B. Here we provide evidence showing that high p21 protein levels are necessary to enter and maintain the quiescence state following contact inhibition and growth factor withdrawal. In fact, entry into quiescence was impaired, both in human fibroblasts in which p21 gene has been deleted, or protein expression knocked-down by RNA interference. Importantly, in the absence of p21, human fibroblasts activate a DNA damage-like signalling pathway, as shown by phosphorylation of histone H2AX and Chk1 proteins. In addition, we show that in the absence of p21, checkpoint is activated by an unscheduled entry into S phase, with a reduced efficiency in DNA maturation, in the presence of high c-myc protein levels. These results highlight the role of p21 in counteracting inappropriate proliferation stimuli for genome stability maintenance.


Oncogene | 2001

p21 waf1/cip1 -null human fibroblasts are deficient in nucleotide excision repair downstream the recruitment of PCNA to DNA repair sites

Lucia Anna Stivala; Federica Riva; Ornella Cazzalini; Monica Savio; Ennio Prosperi

The cyclin-dependent kinase inhibitor p21waf1/cip1 is known to impair DNA synthesis by binding to PCNA, the co-factor of DNA polymerases δ and ε. However, a positive role for p21 in nucleotide excision repair (NER) has been suggested. In this study, the sensitivity to DNA damage and DNA repair efficiency were investigated in p21-null human fibroblasts obtained by targeted homologous recombination. After UV-C irradiation, p21−/− cells showed a threefold reduction in clonogenic survival and an increased susceptibility to apoptosis, as compared with parental p21+/+ cells. Removal of cyclobutane pyrimidine dimers was significantly reduced in p21−/− cells both in the whole genome, and at the level of the rDNA gene cluster, as determined by immunoassay and Southern blot, respectively. After DNA damage, the recruitment of PCNA as detergent-insoluble form associated to DNA repair sites in p21−/− fibroblasts, was comparable to that observed in parental p21+/+ cells. However, PCNA remained associated with DNA for a longer period in p21−/− than in p21+/+ cells. These results suggest that in human cells, p21 is required for NER at a step located downstream the recruitment of PCNA to DNA repair sites.


Nucleic Acids Research | 2008

Interaction of p21CDKN1A with PCNA regulates the histone acetyltransferase activity of p300 in nucleotide excision repair

Ornella Cazzalini; Paola Perucca; Monica Savio; Daniela Necchi; Livia Bianchi; Lucia Anna Stivala; Bernard Ducommun; A.Ivana Scovassi; Ennio Prosperi

The cell-cycle inhibitor p21CDKN1A has been suggested to directly participate in DNA repair, thanks to the interaction with PCNA. Yet, its role has remained unclear. Among proteins interacting with both p21 and PCNA, the histone acetyltransferase (HAT) p300 has been shown to participate in DNA repair. Here we report evidence indicating that p21 protein localizes and interacts with both p300 and PCNA at UV-induced DNA damage sites. The interaction between p300 and PCNA is regulated in vivo by p21. Indeed, loss of p21, or its inability to bind PCNA, results in a prolonged binding to chromatin and an increased association of p300 with PCNA, in UV-irradiated cells. Concomitantly, HAT activity of p300 is reduced after DNA damage. In vitro experiments show that inhibition of p300 HAT activity induced by PCNA is relieved by p21, which disrupts the association between recombinant p300 and PCNA. These results indicate that p21 is required during DNA repair to regulate p300 HAT activity by disrupting its interaction with PCNA.


Journal of Cell Science | 2006

Spatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen

Paola Perucca; Ornella Cazzalini; Oliver Mortusewicz; Daniela Necchi; Monica Savio; Tiziana Nardo; Lucia Anna Stivala; Heinrich Leonhardt; M. Cristina Cardoso; Ennio Prosperi

The cyclin-dependent kinase inhibitor p21CDKN1A plays a fundamental role in the DNA-damage response by inducing cell-cycle arrest, and by inhibiting DNA replication through association with the proliferating cell nuclear antigen (PCNA). However, the role of such an interaction in DNA repair is poorly understood and controversial. Here, we provide evidence that a pool of p21 protein is rapidly recruited to UV-induced DNA-damage sites, where it colocalises with PCNA and PCNA-interacting proteins involved in nucleotide excision repair (NER), such as DNA polymerase δ, XPG and CAF-1. In vivo imaging and confocal fluorescence microscopy analysis of cells coexpressing p21 and PCNA fused to green or red fluorescent protein (p21-GFP, RFP-PCNA), showed a rapid relocation of both proteins at microirradiated nuclear spots, although dynamic measurements suggested that p21-GFP was recruited with slower kinetics. An exogenously expressed p21 mutant protein unable to bind PCNA neither colocalised, nor coimmunoprecipitated with PCNA after UV irradiation. In NER-deficient XP-A fibroblasts, p21 relocation was greatly delayed, concomitantly with that of PCNA. These results indicate that early recruitment of p21 protein to DNA-damage sites is a NER-related process dependent on interaction with PCNA, thus suggesting a direct involvement of p21 in DNA repair.


PLOS ONE | 2010

Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

Claudia Scotti; Patrizia Sommi; Maria Valentina Pasquetto; Donata Cappelletti; Simona Stivala; Paola Mignosi; Monica Savio; Laurent R. Chiarelli; Giovanna Valentini; Victor M. Bolanos-Garcia; Douglas Scott Merrell; Silvia Franchini; Maria Luisa Verona; Cristina Bolis; Enrico Solcia; Rachele Manca; Diego Franciotta; Andrea Casasco; Paola Filipazzi; Elisabetta Zardini; Vanio Vannini

Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.


Biochemical Journal | 2005

Inhibition of mammalian DNA polymerases by resveratrol : Mechanism and structural determinants

Giada A. Locatelli; Monica Savio; Luca Forti; Igor Shevelev; Kristijan Ramadan; Lucia Anna Stivala; Vanio Vannini; Ulrich Hübscher; Silvio Spadari; Giovanni Maga

Resveratrol, a natural compound found in many dietary plants and in red wine, plays an important role in the prevention of many human pathological processes, including inflammation, atherosclerosis and carcinogenesis. We have shown that the antiproliferative activity of resveratrol correlated with its ability to inhibit the replicative pols (DNA polymerases) alpha and delta in vitro [Stivala, Savio, Carafoli, Perucca, Bianchi, Maga, Forti, Pagnoni, Albini, Prosperi and Vannini (2001) J. Biol. Chem. 276, 22586-22594]. In this paper, we present the first detailed biochemical investigation on the mechanism of action of resveratrol towards mammalian pols. Our results suggest that specific structural determinants of the resveratrol molecule are responsible for selective inhibition of different mammalian pols, such as the family B pol alpha and the family X pol lambda. Moreover, the resveratrol derivative trans-3,5-dimethoxy-4-hydroxystilbene, which is endowed with a strong antiproliferative activity (Stivala et al., 2001), can inhibit pols alpha and lambda and also suppress the in vitro SV40 DNA replication. The potency of inhibition is similar to that of aphidicolin, an inhibitor of the three replicative pols alpha, delta and epsilon. Our findings establish the necessary background for the synthesis of resveratrol derivatives having more selective and potent antiproliferative activity.


DNA Repair | 2010

p21CDKN1A participates in base excision repair by regulating the activity of poly(ADP-ribose) polymerase-1.

Ornella Cazzalini; Francesca Donà; Monica Savio; Micol Tillhon; Cristina Maccario; Paola Perucca; Lucia Anna Stivala; A.Ivana Scovassi; Ennio Prosperi

The cell cycle inhibitor p21(CDKN1A) has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21(-/-) human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21(-/-) human fibroblasts than in parental p21(+/+) cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21(-/-) than in p21(+/+) fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase beta, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.

Collaboration


Dive into the Monica Savio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ennio Prosperi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Forti

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge