Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanio Vannini is active.

Publication


Featured researches published by Vanio Vannini.


Neuroscience Letters | 1992

Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis

Isabella Zini; Aldo Tomasi; Roberta Grimaldi; Vanio Vannini; L. F. Agnati

Extracellular free radicals were detected in rat striatal perfusate samples by intracerebral microdialysis coupled to the spin trapping technique. Five Sprague-Dawley rats were subjected to 30 min of global ischemia followed by reperfusion; throughout the experimental period the intrastriatal dialysing probe was perfused with Ringers solution containing the spin trap agent pyridyl-N-oxide-t-butylnitrone (100 mM) together with the iron chelating agent diethylentriaminepentacetic acid (100 microM). A radical adduct occurred during ischemia and early reperfusion, but not in basal conditions; the spin adduct was characterized as a carbon centered radical, consistent with the presence of an oxidative attack on membrane lipids. The direct evidence of the formation of free radicals supports the hypothesis that free radicals play a role in the pathogenesis of the histological damage during brain ischemia.


Chemico-Biological Interactions | 1985

Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique

Aldo Tomasi; Emanuele Albano; Fiorella Biasi; T. F. Slater; Vanio Vannini; Mario U. Dianzani

When hepatocytes isolated from phenobarbital-induced rats were incubated with chloroform and the spin trap phenyl-t-butyl nitrone (PBN) under anaerobic conditions, a free radical-spin trap adduct was detectable by ESR spectroscopy. A similar incubation of hepatocytes in the presence of air resulted in an ESR signal that was eight times less intense than that seen under anaerobic conditions; incubation mixtures exposed to pure oxygen had no detectable adduct signal. A significant reduction in the signal intensity was also produced by the addition of cytochrome P-450 inhibitors such as SKF-525A, metyrapone and carbon monoxide, indicating that free radical formation depended upon the reductive metabolism of chloroform mediated by the mixed oxidase system. The origin of the CHCl3-derived free radical has been confirmed by using [13C]CHCl3, while the comparison between the ESR spectra obtained in the presence of deuterated chloroform (CDCl3) and bromodichloro-methane (CHBrCl2) suggests that the free radical derived from CHCl3 may be CHCl2. Free radical intermediates were also detected during the aerobic and anaerobic incubation of isolated hepatocytes with bromoform (CHBr3), and iodoform (CHI3). The intensity of the ESR signal obtained with the various trihalomethanes increases in the order CHCl3 less than CHBrCl2 less than CHBr3 less than CHI3. The formation of PBN-free radical adducts has also been observed in phenobarbital-induced rats in vivo when intoxicated with chloroform, bromoform or iodoform, suggesting that the reductive metabolism of trihalomethanes might be of relevance to their established toxicity in the whole animal.


Biochemical Pharmacology | 1989

Metabolism in rat liver microsomes of the nitroxide spin probe Tempol

Anna Iannone; Anna Bini; Harold M. Swartz; Aldo Tomasi; Vanio Vannini

Paramagnetic nitroxide spin labels have been extensively used to probe various biophysical and biochemical properties of the cellular environment. Recently nitroxides have been proposed as contrast enhancing agents in proton magnetic resonance imaging and contrast enhancement has been demonstrated in animal studies. Nitroxides, possessing a stable unpaired electron, increases the relaxation rates of protons, providing an enhancement of contrast. Nitroxides are metabolized intracellularly principally via reversible reduction to hydroxylamines. Rates of reduction depend on the physical characteristics of the nitroxides, in general 5-membered pyrrolidine ring are reduced more slowly than those with a 6-membered piperidine ring. Oxidation back to the nitroxide is relevant for lipid soluble hydroxylamines, while is low for water soluble ones. It is known that nitroxides are metabolized by subcellular fractions (cytosol, mitochondria, microsomes), though the enzymatic and non-enzymatic systems involved are poorly characterized. In the present study, the first of the necessary steps toward a systematic study of the metabolism of nitroxides by subcellular organelles, we have chosen to study the metabolism of 4-hydroxy 2,2,6,6-tetramethylpiperidine-N-oxyl in isolated rat liver microsomes. Microsomes were able to reduce Tempol slowly without any substrate addition; when NADPH was added, the reduction rate substantially increased. In phenobarbitone induced rats the reduction rate was significantly higher than in not-induced microsomes. NADPH-dependent reduction rate was inhibited by thallium chloride (an inhibitor of the flavin-centered cytochrome P-450 reductase), superoxide dismutase, and by N-ethylmaleimide; menadione increased it. The Tempol reduction rate was not significantly affected by various cytochrome P-450 inhibitors with the sole exception of metyrapone. A solution containing purified cytochrome P-450 reductase and NADPH readily reduced Tempol. Microsomes fortified with NADPH were able to reduce Tempol at an appreciable rate. In order to distinguish between reduction of nitroxides to hydroxylamine or destruction of nitroxides following nitroxide reduction, microsomal suspensions were treated with a mild oxidant (ferricyanide 0.5-10 mM). The recovery varied from 40 to 60%, indicating a process of probe destruction leading to as yet unknown metabolites. The present study clearly indicates that, in this model system, cytochrome c (P-450) reductase and not cytochrome P-450 is responsible for the observed Tempol metabolism; along with hydroxylamine formation, other Tempol derived metabolites are formed during the process.


Journal of the Neurological Sciences | 1999

Zidovudine-induced experimental myopathy: dual mechanism of mitochondrial damage.

Alberto Masini; Claudia Scotti; Alberto Calligaro; Ornella Cazzalini; Lucia Anna Stivala; Livia Bianchi; Fabiola Giovannini; Daniela Ceccarelli; Umberto Muscatello; Aldo Tomasi; Vanio Vannini

Myopathy often complicates Zidovudine (AZT) treatment in patients with acquired immunodeficiency syndrome (AIDS). The pathogenesis of the myopathy is controversial, since clinical phenomena intrinsic to AIDS may interfere per se with the onset of the myopathy. In the present work we investigated the in vivo effect of AZT in an animal model species (rat) not susceptible to HIV infection. Histochemical and electron microscopic analyses demonstrated that, under the experimental conditions used, the in vivo treatment with AZT does not cause in skeletal muscle true dystrophic lesions, but rather mitochondrial alterations confined to the fast fibers. In the same animal models, the biochemical analysis confirmed that mitochondria are the target of AZT toxicity in muscles. The effects of AZT on mitochondria energy transducing mechanisms were investigated in isolated mitochondria both in vivo and in vitro. Membrane potential abnormalities, due to a partial impairment of the respiratory chain capability observed in muscle mitochondria from AZT-treated rats, closely resemble those of control mitochondria in the presence of externally added AZT. mtDNA deletion analysis by PCR amplification and Southern blot analysis did not show any relevant deletion, while mtDNA depletion analysis demonstrated a significant decrease in mtDNA in AZT-treated rats. The present findings show that AZT causes damage to mitochondria by two mechanisms: a short-term mechanism that affects directly the respiratory chain, and a long-term mechanism that alters the mitochondrial DNA thus impairing the mitochondrial protein synthesis. In addition, the ultrastructural observations indicate that the fiber types are differently affected upon AZT treatment, which poses a number of questions as to the pathogenesis of this myopathy.


Biochimica et Biophysica Acta | 1989

Metabolism of aqueous soluble nitroxides in hepatocytes: effects of cell integrity, oxygen, and structure of nitroxides.

Anna Iannone; Huping Hu; Aldo Tomasi; Vanio Vannini; Harold M. Swartz

The optimum use of nitroxides in viable biological systems, including live animals, requires knowledge of the metabolism of nitroxides by major organ systems, especially the liver. We report here details of the metabolism of several prototypic aqueous soluble nitroxides in suspensions of freshly isolated hepatocytes. The general patterns of metabolism were similar to those observed in other types of cells (previous studies have been done principally in cells from tissue culture, such as CHO cells) including the primary initial reaction being reduction to the hydroxylamine, an increased rate of metabolism of some nitroxides in hypoxic cells, faster rates of reduction of nitroxides on six-membered piperidine rings compared to five-membered pyrrolidine rings, and most metabolism being intracellular. Metabolism in hepatocytes differed from other cell lines in having (1) significant reduction in the extracellular medium due to ascorbate that was released from damaged hepatocytes; (2) decreased rates of metabolism in freeze-thawed cells due to damage to subcellular organelles. These results provide much of the data needed to understand the role of the liver in the metabolism of nitroxides by intact animals and explain some previously puzzling results which indicated an apparent unusually high rate of metabolism of a charged nitroxide (Cat1) by hepatocytes. Our results also indicate that the use of freshly isolated cells or tissue homogenates may introduce experimental artifacts in the study of the metabolism of nitroxides.


Biochimica et Biophysica Acta | 1990

Metabolism of nitroxide spin labels in subcellular fraction of rat liver: I. Reduction by microsomes

Anna Iannone; Aldo Tomasi; Vanio Vannini; Harold M. Swartz

As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is located. Important variables that were studied included adding NADH, adding NADPH, induction of enzymes by intake of phenobarbital and the effects of oxygen. Reduction to nonparamagnetic derivatives and oxidation back to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADH or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital, and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylamines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.


Cell Cycle | 2009

Loss of p21CDKN1A impairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence

Paola Perucca; Ornella Cazzalini; Mark Madine; Monica Savio; Ronal Alfred Laskey; Vanio Vannini; Ennio Prosperi; Lucia Anna Stivala

The cell cycle inhibitor p21CDKN1A induces cell cycle arrest under different conditions, including senescence and terminal differentiation. Still debated is its involvement in the reversible transition from proliferation to a non-dividing quiescent state (G0), in which a significant role has been attributed to cell cycle inhibitor p27CDKN1B. Here we provide evidence showing that high p21 protein levels are necessary to enter and maintain the quiescence state following contact inhibition and growth factor withdrawal. In fact, entry into quiescence was impaired, both in human fibroblasts in which p21 gene has been deleted, or protein expression knocked-down by RNA interference. Importantly, in the absence of p21, human fibroblasts activate a DNA damage-like signalling pathway, as shown by phosphorylation of histone H2AX and Chk1 proteins. In addition, we show that in the absence of p21, checkpoint is activated by an unscheduled entry into S phase, with a reduced efficiency in DNA maturation, in the presence of high c-myc protein levels. These results highlight the role of p21 in counteracting inappropriate proliferation stimuli for genome stability maintenance.


Cell Cycle | 2003

p21CDKN1A does not interfere with loading of PCNA at DNA replication sites, but inhibits subsequent binding of DNA polymerase delta at the G1/S phase transition.

Ornella Cazzalini; Paola Perucca; Federica Riva; Lucia Anna Stivala; Livia Bianchi; Vanio Vannini; Bernard Ducommun; Ennio Prosperi

The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21wtHA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase d (pol d). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol d to PCNA at the G1/S phase transition.


Biochemical Pharmacology | 2001

Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes

Ornella Cazzalini; Maria Claudia Lazzè; Luisa Iamele; Lucia Anna Stivala; Livia Bianchi; Patrizia Vaghi; Antonia Icaro Cornaglia; Alberto Calligaro; Daniela Curti; Andrea Alessandrini; Ennio Prosperi; Vanio Vannini

Zidovudine (AZT) is a potent inhibitor of human immunodeficiency virus (HIV) replication. In humans, as well as in animal models, long-term treatment with AZT induces a severe myopathy characterised by structural and functional alterations of mitochondria associated with depletion of mitochondrial DNA (mtDNA). In the present work, we compared the effects induced by AZT on mitochondria upon short- or long-term treatments of cultured rat myotubes. Morphological alterations were investigated by electron microscopy, and mtDNA depletion and deletions were analysed by Southern blot. Mitochondrial membrane potential was determined after JC-1 staining by laser-scanning confocal microscopy in whole cells, and by flow cytometry in isolated muscle mitochondria. We found that the early effects of AZT on mitochondrial functions were a marked, yet reversible reduction in mitochondrial membrane potential, in the absence of any effect on mtDNA. The long-term treatment, in addition to mitochondrial membrane potential alterations, induced morphological changes in mitochondria, and a remarkable reduction in the amount of mtDNA, without any significant evidence of mtDNA deletions. In both treatments, a block of the spontaneous contraction of myotubes was observed. To study in more detail the early effects induced by AZT, the ability of the drug to interact with cardiolipin, an important component of internal mitochondrial membrane, was investigated by atomic force microscopy (AFM) in an artificial membrane model system. The results suggest that the primary effects of AZT may be related to a physical interference with the membrane structure leading to a consequent modification of its physical characteristics.


PLOS ONE | 2010

Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

Claudia Scotti; Patrizia Sommi; Maria Valentina Pasquetto; Donata Cappelletti; Simona Stivala; Paola Mignosi; Monica Savio; Laurent R. Chiarelli; Giovanna Valentini; Victor M. Bolanos-Garcia; Douglas Scott Merrell; Silvia Franchini; Maria Luisa Verona; Cristina Bolis; Enrico Solcia; Rachele Manca; Diego Franciotta; Andrea Casasco; Paola Filipazzi; Elisabetta Zardini; Vanio Vannini

Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

Collaboration


Dive into the Vanio Vannini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Tomasi

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ennio Prosperi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Iannone

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Forti

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge