Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Vaccari is active.

Publication


Featured researches published by Monica Vaccari.


Mucosal Immunology | 2008

Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques.

Valentina Cecchinato; Christopher J. Trindade; Arian Laurence; Jean-Michel Heraud; Jason M. Brenchley; Maria Grazia Ferrari; L Zaffiri; Elzbieta Tryniszewska; Wen-Po Tsai; Monica Vaccari; R Washington Parks; David Venzon; John J. O’Shea; Genoveffa Franchini

Loss of CD4+ T cells in the gut is necessary but not sufficient to cause AIDS in animal models, raising the possibility that a differential loss of CD4+ T-cell subtypes may be important. We found that CD4+ T cells that produce interleukin (IL)-17, a recently identified lineage of effector CD4+ T-helper cells, are infected by SIVmac251in vitro and in vivo, and are found at lower frequency at mucosal and systemic sites within a few weeks from infection. In highly viremic animals, Th1 cells predominates over Th17 T cells and the frequency of Th17 cells at mucosal sites is negatively correlated with plasma virus level. Because Th17 cells play a central role in innate and adaptive immune response to extracellular bacteria, our finding may explain the chronic enteropathy in human immunodeficiency virus (HIV) infection. Thus, therapeutic approaches that reconstitute an adequate balance between Th1 and Th17 may be beneficial in the treatment of HIV infection.


Journal of Clinical Investigation | 2013

Superior T memory stem cell persistence supports long-lived T cell memory

Enrico Lugli; Maria H. Dominguez; Luca Gattinoni; Pratip K. Chattopadhyay; Diane L. Bolton; Kaimei Song; Nichole R. Klatt; Jason M. Brenchley; Monica Vaccari; Emma Gostick; David A. Price; Thomas A. Waldmann; Nicholas P. Restifo; Genoveffa Franchini; Mario Roederer

Long-lived memory T cells are able to persist in the host in the absence of antigen; however, the mechanism by which they are maintained is not well understood. Recently, a subset of human T cells, stem cell memory T cells (TSCM cells), was shown to be self-renewing and multipotent, thereby providing a potential reservoir for T cell memory throughout life. However, their in vivo dynamics and homeostasis still remain to be defined due to the lack of suitable animal models. We identified T cells with a TSCM phenotype and stem cell-like properties in nonhuman primates. These cells were the least-differentiated memory subset, were functionally distinct from conventional memory cells, and served as precursors of central memory. Antigen-specific TSCM cells preferentially localized to LNs and were virtually absent from mucosal surfaces. They were generated in the acute phase of viral infection, preferentially survived in comparison with all other memory cells following elimination of antigen, and stably persisted for the long term. Thus, one mechanism for maintenance of long-term T cell memory derives from the unique homeostatic properties of TSCM cells. Vaccination strategies designed to elicit durable cellular immunity should target the generation of TSCM cells.


Journal of Virology | 2007

Regulatory T-Cell Markers, Indoleamine 2,3-Dioxygenase, and Virus Levels in Spleen and Gut during Progressive Simian Immunodeficiency Virus Infection

Adriano Boasso; Monica Vaccari; Anna Hryniewicz; Dietmar Fuchs; Janos Nacsa; Valentina Cecchinato; Jan Andersson; Genoveffa Franchini; Gene M. Shearer; Claire A. Chougnet

ABSTRACT High levels of viral replication occur in gut-associated lymphoid tissue (GALT) and other lymphoid tissues (LT) since the early phase of human/simian immunodeficiency virus (HIV/SIV) infection. Regulatory T cells (Treg), a subset of immunosuppressive T cells expressing CTLA-4 and the FoxP3 transcription factor, accumulate in LT during HIV/SIV infection. Here we show that FoxP3 and CTLA-4 mRNA are increased in leukocytes from the spleens, lymph nodes (LN), and mucosal sites of chronically SIV-infected macaques with high viremia (SIVHI) compared to animals with low viremia (SIVLO). FoxP3 and CTLA-4 correlated with SIV RNA levels in tissues; SIV virus levels in the spleen, inguinal LN, mesenteric LN, colon, and jejunum directly correlated with the plasma virus level. Importantly, CTLA-4 and FoxP3 mRNA were predominantly increased in the CD25− subpopulation of leukocytes from SIVHI, further challenging the classical definition of Treg as CD4+ CD25+ T cells. Similar to CTLA-4 and FoxP3, expression of indoleamine 2,3-dioxygenase (IDO), an immunosuppressive enzyme induced by Treg in antigen-presenting cells, was increased in the spleens, mesenteric LN, colons, and jejuna from SIVHI compared to SIVLO and directly correlated to SIV RNA in the same tissues. Accordingly, plasma kynurenine/tryptophan, a marker for IDO enzymatic activity, was significantly higher in SIVHI compared to SIVLO and correlated with plasma viral levels. Increased Treg and IDO in LT of SIV-infected macaques may be the consequence of increased tissue inflammation and/or may favor virus replication during the chronic phase of SIV infection.


Journal of Immunology | 2006

Subunit Recombinant Vaccine Protects against Monkeypox

Jean-Michel Heraud; Yvette Edghill-Smith; Victor I. Ayala; Irene Kalisz; Janie Parrino; V. S. Kalyanaraman; Jody Manischewitz; Lisa R. King; Anna Hryniewicz; Christopher J. Trindade; Meredith Hassett; Wen-Po Tsai; David Venzon; Aysegul Nalca; Monica Vaccari; Peter Silvera; Mike Bray; Barney S. Graham; Hana Golding; Jay W. Hooper; Genoveffa Franchini

The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20–155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.


Journal of Immunology | 2008

Immune Activation Driven by CTLA-4 Blockade Augments Viral Replication at Mucosal Sites in Simian Immunodeficiency Virus Infection

Valentina Cecchinato; Elzbieta Tryniszewska; Zhong Min Ma; Monica Vaccari; Adriano Boasso; Wen Po Tsai; Constantinos Petrovas; Dietmar Fuchs; Jean-Michel Heraud; David Venzon; Gene M. Shearer; Richard A. Koup; Israel Lowy; Christopher J. Miller; Genoveffa Franchini

The importance of chronic immune activation in progression to AIDS has been inferred by correlative studies in HIV-infected individuals and in nonhuman primate models of SIV infection. Using the SIVmac251 macaque model, we directly address the impact of immune activation by inhibiting CTLA-4, an immunoregulatory molecule expressed on activated T cells and a subset of regulatory T cells. We found that CTLA-4 blockade significantly increased T cell activation and viral replication in primary SIVmac251 infection, particularly at mucosal sites, and increased IDO expression and activity. Accordingly, protracted treatment with anti-CTLA-4 Ab of macaques chronically infected with SIVmac251 decreased responsiveness to antiretroviral therapy and abrogated the ability of therapeutic T cell vaccines to decrease viral set point. These data provide the first direct evidence that immune activation drives viral replication, and suggest caution in the use of therapeutic approaches for HIV infection in vivo that increase CD4+ T cell proliferation.


Journal of Virology | 2013

Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

Poonam Pegu; Monica Vaccari; Shari N. Gordon; Brandon F. Keele; Melvin N. Doster; Yongjun Guan; Guido Ferrari; Ranajit Pal; Maria Grazia Ferrari; Stephen Whitney; Lauren Hudacik; Erik Billings; Mangala Rao; David C. Montefiori; Georgia D. Tomaras; S. Munir Alam; Claudio Fenizia; Jeffrey D. Lifson; Donald Stablein; Jim Tartaglia; Nelson L. Michael; Jerome H. Kim; David Venzon; Genoveffa Franchini

ABSTRACT The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.


Journal of Immunology | 2005

Vaccine-Induced CD8+ Central Memory T Cells in Protection from Simian AIDS

Monica Vaccari; Christopher J. Trindade; David Venzon; Maurizio Zanetti; Genoveffa Franchini

Critical to the development of an effective HIV vaccine is the identification of adaptive immune responses that prevent infection or disease. In this study we demonstrate in a relevant nonhuman primate model of AIDS that the magnitude of vaccine-induced virus-specific CD8+ central memory T cells (TCM), but not that of CD8+ effector memory T cells, inversely correlates with the level of SIVmac251 replication, suggesting their pivotal role in the control of viral replication. We propose that effective preventive or therapeutic T cell vaccines for HIV-1 should induce long-term protective central memory T cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques

Yongjun Sui; Qing Zhu; Susan J. Gagnon; Amiran Dzutsev; Masaki Terabe; Monica Vaccari; David Venzon; Dennis M. Klinman; Warren Strober; Brian L. Kelsall; Genoveffa Franchini; Igor M. Belyakov; Jay A. Berzofsky

Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8+ T cells correlated with protection, not tetramer+ T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Rα, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.


Nature Medicine | 2016

Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition.

Monica Vaccari; Shari N. Gordon; Slim Fourati; Luca Schifanella; Namal P.M. Liyanage; Mark J. Cameron; Brandon F. Keele; Xiaoying Shen; Georgia D. Tomaras; Erik Billings; Mangala Rao; Amy W. Chung; Karen G. Dowell; Chris Bailey-Kellogg; Eric P. Brown; Margaret E. Ackerman; Diego A. Vargas-Inchaustegui; Stephen Whitney; Melvin N. Doster; Nicolo Binello; Poonam Pegu; David C. Montefiori; Kathryn E. Foulds; David S. Quinn; Mitzi Donaldson; Frank Liang; Karin Loré; Mario Roederer; Richard A. Koup; Adrian B. McDermott

A recombinant vaccine containing Aventis Pasteurs canarypox vector (ALVAC)–HIV and gp120 alum decreased the risk of HIV acquisition in the RV144 vaccine trial. The substitution of alum with the more immunogenic MF59 adjuvant is under consideration for the next efficacy human trial. We found here that an ALVAC–simian immunodeficiency virus (SIV) and gp120 alum (ALVAC–SIV + gp120) equivalent vaccine, but not an ALVAC–SIV + gp120 MF59 vaccine, was efficacious in delaying the onset of SIVmac251 in rhesus macaques, despite the higher immunogenicity of the latter adjuvant. Vaccine efficacy was associated with alum-induced, but not with MF59-induced, envelope (Env)-dependent mucosal innate lymphoid cells (ILCs) that produce interleukin (IL)-17, as well as with mucosal IgG to the gp120 variable region 2 (V2) and the expression of 12 genes, ten of which are part of the RAS pathway. The association between RAS activation and vaccine efficacy was also observed in an independent efficacious SIV-vaccine approach. Whether RAS activation, mucosal ILCs and antibodies to V2 are also important hallmarks of HIV-vaccine efficacy in humans will require further studies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection

Timothy Fouts; Kenneth C. Bagley; Ilia Prado; Kathryn Bobb; Jennifer Schwartz; Rong Xu; Robert Zagursky; Michael A. Egan; John H. Eldridge; Celia C. LaBranche; David C. Montefiori; Hélène Le Buanec; Daniel Zagury; Ranajit Pal; George N. Pavlakis; Barbara K. Felber; Genoveffa Franchini; Shari N. Gordon; Monica Vaccari; George K. Lewis; Anthony L. DeVico; Robert C. Gallo

Significance Our candidate HIV vaccine, a single-chain gp120-CD4 chimera, elicits protection against acquisition of simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) in rhesus macaques. Antibody-dependent cellular cytotoxicity was an inverse correlate of infection risk. However, it is attenuated when antigen-specific T-cell responses exceed a threshold, presumably due to the generation of CD4+ CCR5+ T cells, the preferred cellular targets of SHIV/SIV. Multiple studies strongly suggest that HIV/SIV-specific T-cell responses are a double-edged sword. On one hand, they are required for T-cell help in the protective antibody response. On the other hand, they appear to mitigate protection by creating new targets for viral replication. Determining the balance between protective antibody responses and attenuating T-cell responses is a key challenge confronting HIV vaccine development. A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.

Collaboration


Dive into the Monica Vaccari's collaboration.

Top Co-Authors

Avatar

Genoveffa Franchini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Venzon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Melvin N. Doster

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shari N. Gordon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poonam Pegu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gene M. Shearer

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

George N. Pavlakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barbara K. Felber

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge