Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Vettore is active.

Publication


Featured researches published by Monica Vettore.


Journal of diabetes science and technology | 2009

Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier

Daniela Bruttomesso; Anne Farret; Silvana Costa; Maria Cristina Marescotti; Monica Vettore; Angelo Avogaro; Antonio Tiengo; Chiara Dalla Man; Jerome Place; Andrea Facchinetti; Stefania Guerra; Lalo Magni; Giuseppe De Nicolao; Claudio Cobelli; Eric Renard; Alberto Maran

New effort has been made to develop closed-loop glucose control, using subcutaneous (SC) glucose sensing and continuous subcutaneous insulin infusion (CSII) from a pump, and a control algorithm. An approach based on a model predictive control (MPC) algorithm has been utilized during closed-loop control in type 1 diabetes patients. Here we describe the preliminary clinical experience with this approach. In Padova, two out of three subjects showed better performance with the closed-loop system compared to open loop. Altogether, mean overnight plasma glucose (PG) levels were 134 versus 111 mg/dl during open loop versus closed loop, respectively. The percentage of time spent at PG > 140 mg/dl was 45% versus 12%, while postbreakfast mean PG was 165 versus 156 mg/dl during open loop versus closed loop, respectively. Also, in Montpellier, two patients out of three showed a better glucose control during closed-loop trials. Avoidance of nocturnal hypoglycemic excursions was a clear benefit during algorithm-guided insulin delivery in all cases. This preliminary set of studies demonstrates that closed-loop control based entirely on SC glucose sensing and insulin delivery is feasible and can be applied to improve glucose control in patients with type 1 diabetes, although the algorithm needs to be further improved to achieve better glycemic control. Six type 1 diabetes patients (three in each of two clinical investigation centers in Padova and Montpellier), using CSII, aged 36 ± 8 and 48 ± 6 years, duration of diabetes 12 ± 8 and 29 ± 4 years, hemoglobin A1c 7.4% ± 0.1% and 7.3% ± 0.3%, body mass index 23.2 ± 0.3 and 28.4 ± 2.2 kg/m2, respectively, were studied on two occasions during 22 h overnight hospital admissions 2–4 weeks apart. A Freestyle Navigator® continuous glucose monitor and an OmniPod® insulin pump were applied in each trial. Admission 1 used open-loop control, while admission 2 employed closed-loop control using our MPC algorithm.


Journal of Clinical Investigation | 1996

Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics.

Paolo Tessari; Giacomo Garibotto; S. Inchiostro; Cristina Robaudo; Stefano Saffioti; Monica Vettore; Michela Zanetti; Rodolfo Russo; Giacomo Deferrari

The rate of kidney protein turnover in humans is not known. To this aim, we have measured kidney protein synthesis and degradation in postabsorptive humans using the arterio-venous catheterization technique combined with 14C-leucine, 15N-leucine, and 3H-phenylalanine tracer infusions. These measurements were compared with those obtained across the splanchnic bed, the legs (approximately muscle) and in the whole body. In the kidneys, protein balance was negative, as the rate of leucine release from protein degradation (16.8 +/- 5.1 mumol/min.1.73 m2) was greater (P < 0.02) than its uptake into protein synthesis (11.6 +/- 5.1 mumol/min. 1.73 m2). Splanchnic net protein balance was approximately 0 since leucine from protein degradation (32.1 +/- 9.9 mumol/min. 1.73 m2) and leucine into protein synthesis (30.8 +/- 11.5 mumol/min. 1.73 m2) were not different. In the legs, degradation exceeded synthesis (27.4 +/- 6.6 vs. 20.3 +/- 6.5 mumol/min. 1.73 m2, P < 0.02). The kidneys extracted alpha-ketoisocaproic acid, accounting for approximately 70% of net splanchnic alpha-ketoisocaproic acid release. The contributions by the kidneys to whole-body leucine rate of appearance, utilization for protein synthesis, and oxidation were approximately 11%, approximately 10%, and approximately 26%, respectively; those by the splanchnic area approximately 22%, approximately 27%, and approximately 18%; those from estimated total skeletal muscle approximately 37%, approximately 34%, and approximately 48%. Estimated fractional protein synthetic rates were approximately 42%/d in the kidneys, approximately 12% in the splanchnic area, and approximately 1.5% in muscle. This study reports the first estimates of kidney protein synthesis and degradation in humans, also in comparison with those measured in the splanchnic area, the legs, and the whole-body.


Diabetes | 2010

Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy

Paolo Tessari; Diego Cecchet; Alessandra Cosma; Monica Vettore; Anna Coracina; Renato Millioni; Elisabetta Iori; Lucia Puricelli; Angelo Avogaro; Monica Vedovato

OBJECTIVE Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS We measured NOx fractional (FSR) and absolute (ASR) synthesis rates in type 2 diabetic patients with diabetic nephropathy and in control subjects, after l-[15N2-guanidino]-arginine infusion, and use of precursor–product relationships. The study was conducted both before and after an euglycemic hyperinsulinemic (∼1,000–1,200 pmol/l) clamp. RESULTS In type 2 diabetes, NOx FSR was reduced both under basal (19.3 ± 3.9% per day, vs. 22.9 ± 4.5% per day in control subjects) and hyperinsulinemic states (24.0 ± 5.6% per day, vs. 37.9 ± 6.4% per day in control subjects; P < 0.03 by ANOVA). Similarly, in type 2 diabetes, NOx ASR was lower than in control subjects under both conditions (basal, 0.32 ± 0.06 vs. 0.89 ± 0.34 mol per day; hyperinsulinemia, 0.35 ± 0.07 vs. 1.15 ± 0.38 mol per day; P = 0.01 by ANOVA). In type 2 diabetes, the ability of insulin to stimulate both the FSR (4.7 ± 3.2% per day) and the ASR (0.03 ± 0.04 mol per day) of NOx was several-fold lower than that in control subjects (15.0 ± 2.9% per day and 0.25 ± 0.07 mol per day, P < 0.03 and P < 0.02, respectively). Also the fraction of arginine flux converted to NOx (basal, 0.22 ± 0.05% vs. 0.65 ± 0.25%; hyperinsulinemia, 0.32 ± 0.06% vs. 1.03 ± 0.33%) was sharply reduced in the patients (P < 0.01 by ANOVA). CONCLUSIONS In type 2 diabetic patients with nephropathy, intravascular NOx synthesis from arginine is decreased under both basal and hyperinsulinemic states. This defect extends the concept of insulin resistance to NO metabolism.


Diabetes | 1997

Evidence for Acute Stimulation of Fibrinogen Production by Glucagon in Humans

Paolo Tessari; Elisabetta Iori; Monica Vettore; Michela Zanetti; Edward Kiwanuka; Gloria Davanzo; Rocco Barazzoni

Fibrinogen, an acute-phase protein, and glucagon, a stress hormone, are often elevated in many conditions of physical and metabolic stress, including uncontrolled diabetes. However, the possible mechanisms for this association are poorly known. We have studied the acute effects of selective hyperglucagonemia (raised from ∼200 to ∼350 pg/ml for 3 h) on fibrinogen fractional secretion rate (FSR) in eight normal subjects during infusion of somatostatin and replacement doses of insulin, glucagon, and growth hormone. Fibrinogen FSR was evaluated by precursor-product relationships using either Phe (n = 8) or Leu (n = 2) tracers. Hyperglucagonemia did not change either plasma Phe or Tyr specific activity. After hyperglucagonemia, fibrinogen FSR increased by ∼65% (from 12.9 ± 3.6 to 21.5 ± 6.1% per day, P < 0.025) using plasma Phe specific activity as the precursor pool. FSR increased by ∼80% (from 16.6 ± 4.8 to 29.4 ± 8.8% per day, P < 0.025) if plasma Phe specific activity was corrected for the ketoisocaproate/Leu enrichment (or specific activity) ratio to obtain an approximate estimate of intrahepatic Phe specific activity. FSR increased by ∼60% when using plasma Tyr specific activity as precursor pool (n = 8) (P < 0.05), as well as when using the Leu tracer precursorproduct relationship (n = 2). In conclusion, selective hyperglucagonemia for ∼3 h acutely stimulated fibrinogen FSR using a Phe tracer method. Thus, glucagon may be involved in the increase of fibrinogen concentration and FSR observed under stressed or pathologic conditions.


Journal of The American Society of Nephrology | 2004

Kidney Protein Dynamics and Ammoniagenesis in Humans with Chronic Metabolic Acidosis

Giacomo Garibotto; Antonella Sofia; Cristina Robaudo; Stefano Saffioti; Maria Rita Sala; Daniela Verzola; Monica Vettore; Rodolfo Russo; Vanessa Procopio; Giacomo Deferrari; Paolo Tessari

To evaluate the effects of chronic metabolic acidosis on protein dynamics and amino acid oxidation in the human kidney, a combination of organ isotopic ((14)C-leucine) and mass-balance techniques in 11 subjects with normal renal function undergoing venous catheterizations was used. Five of 11 studies were performed in the presence of metabolic acidosis. In subjects with normal acid-base balance, kidney protein degradation was 35% to 130% higher than protein synthesis, so net protein leucine balance was markedly negative. In acidemic subjects, kidney protein degradation was no different from protein synthesis and was significantly lower (P < 0.05) than in controls. Kidney leucine oxidation was similar in both groups. Urinary ammonia excretion and total ammonia production were 186% and 110% higher, respectively, and more of the ammonia that was produced was shifted into urine (82% versus 65% in acidemic subjects versus controls). In all studies, protein degradation and net protein balance across the kidney were inversely related to urinary ammonia excretion and to the partition of ammonia into urine, but not to total ammonia production, arterial pH, [HCO(-)(3)], urinary flow, the uptake of glutamine by the kidney, or the ammonia released into the renal veins. The data show that response of the human kidney to metabolic acidosis includes both changes in amino acid uptake and suppression of protein degradation. The latter effect, which is likely induced by the increase in ammonia excretion and partition into the urine, is potentially responsible for kidney hypertrophy.


Gastroenterology | 1993

Leucine and Phenylalanine Kinetics in Compensated Liver Cirrhosis: Effects of Insulin

Paolo Tessari; G. Biolo; S. Inchiostro; Rocco Orlando; Monica Vettore; Giuseppe Sergi

BACKGROUND The pathogenesis of the altered ratio of branched-chain amino acid to aromatic amino acid concentration in liver cirrhosis is poorly known. We explored the possible link between altered amino acid concentrations and kinetics in cirrhosis. METHODS Post-absorptive leucine and phenylalanine rates of appearance (Ra) and their response to insulin were studied in patients with compensated, nondiabetic cirrhosis and in controls. RESULTS In the cirrhotics, concentration of postabsorptive phenylalanine was greater and that of alpha-ketoisocaproate lower than in controls, whereas concentration of leucine was comparable. Leucine Ra was lower, phenylalanine Ra was greater, and the ratio of leucine Ra to phenylalanine Ra was markedly decreased (P < 0.001) in patients vs. controls (2.40 +/- 0.23 vs. 3.67 +/- 0.19, respectively). During an euglycemic-hyperinsulinemic clamp, glucose disposal was reduced and leucine Ra was suppressed more profoundly in cirrhotics than in controls, whereas suppression of phenylalanine Ra was comparable. CONCLUSIONS In compensated liver cirrhosis, postabsorptive phenylalanine Ra is increased with respect to leucine Ra, suggesting the existence either of altered amino acid pools and/or transport or of abnormally sequenced proteins and/or peptides. Insulin resistance is restricted to glucose, but not to amino acid metabolism.


Diabetes | 1996

Hyperglucagonemia stimulates phenylalanine oxidation in humans

Paolo Tessari; S. Inchiostro; Rocco Barazzoni; Michela Zanetti; Monica Vettore; Gianni Biolo; Elisabetta Iori; Edward Kiwanuka; Antonio Tiengo

Glucagon stimulates in vitro liver phenylalanine (Phe) degradation, thus inducing net protein catabolism. Whether these effects occur also in vivo in humans is not known. Therefore, we studied the effects of physiological hyperglucagonemia on Phe rate of appearance (Rα), hydroxylation, and oxidation in seven normal volunteers during infusions of somatostatin with replacement doses of insulin and growth hormone. Steady-state Phe kinetics were evaluated using the l-[1-14C]Phe tracer both at the end of a 3-h basal glucagon replacement period (glucagon concentration: 212 ± 115 ng/l) and after a 3-h hormone infusion at the rate of ∼ 3 ng · kg−1 · min−1 (→654 ± 280 ng/l). Hyperglucagonemia did not change plasma Phe concentration and Ra but increased Phe oxidation by ∼ 30% (P < 0.01). Oxidation was also increased by ∼ 24% (P < 0.01) using plasma [14C]tyrosine (Tyr) specific activity as a precursor pool. Phe hydroxylation to Tyr estimated by assuming a fixed ratio of Tyr to Phe Rα (0.73) did not change. Nonhydroxylated Phe disposal decreased by ∼ 6% (P = 0.08). These data show that in humans in the postabsorptive state, hyperglucagonemia, with near maintenance of basal insulin and growth hormone concentrations, stimulates Phe oxidation but not Phe hydroxylation, suggesting a different regulation of these two Phe catabolic steps. Glucagon may also reduce Phe availability for protein synthesis.


Diabetes | 2013

Roles of Insulin, Age, and Asymmetric Dimethylarginine on Nitric Oxide Synthesis In Vivo

Paolo Tessari; Diego Cecchet; Carlo Artusi; Monica Vettore; Renato Millioni; Mario Plebani; Lucia Puricelli; Monica Vedovato

We tested the effects of insulin on production of nitrous oxide (NO)-related substances (nitrites and nitrates [NOx]) after 15N-arginine intravenous infusion and on asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) concentrations in conditions reportedly associated with altered NO availability, i.e., aging, hypertension, hypercholesterolemia, and type 2 diabetes mellitus (T2DM). A total of 26 male subjects (age 23–71 years, BMI 23–33 kg/m2), some of whom were affected by mixed pathologic features, were enrolled. NOx fractional synthesis rate (FSR) was lower in elderly (P < 0.015) and T2DM subjects (P < 0.03) than in matched control subjects. Hyperinsulinemia generally increased both NOx FSR and absolute synthesis rate (ASR) and reduced NOx, ADMA, and SDMA concentrations. Insulin sensitivity was impaired only in T2DM. With use of simple linear regression analysis across all subjects, age was inversely correlated with both NOx FSR (R2 = 0.23, P < 0.015) and ASR (R2 = 0.21, P < 0.02). NOx FSR inversely correlated with both ADMA and SDMA. With use of multiple regression analysis and various models, NOx FSR remained inversely associated with age and ADMA, whereas ASR was inversely associated with age and diabetes. No association with insulin sensitivity was found. We conclude that whole-body NOx production is decreased in aging and T2DM. Age, ADMA concentration, and T2DM, but not insulin resistance, appear as negative regulators of whole-body NOx production.


Diabetic Medicine | 1999

Effect of different times of administration of a single ethanol dose on insulin action, insulin secretion and redox state.

N. Trojan; P. Pavan; Elisabetta Iori; Monica Vettore; Maria Cristina Marescotti; I. A. Macdonald; Antonio Tiengo; G. Pacini; Angelo Avogaro

Aims Ethanol (EtOH) can affect glucose metabolism by altering the redox state, insulin‐mediated glucose uptake and insulin secretion. We sought to determine the effects of an acute oral EtOH load on insulin secretion and glucose tolerance and the importance of a different timing of administration relative to a glucose load.


Metabolism-clinical and Experimental | 1998

Relationships between phenylalanine hydroxylation and plasma aromatic amino acid concentrations in humans

Rocco Barazzoni; Michela Zanetti; Monica Vettore; Paolo Tessari

We investigated the relationships between phenylalanine hydroxylation (Phe Hy) and plasma concentrations of phenylalanine, tyrosine, and glucagon in healthy male volunteers (N = 13; age, 29 +/- 3 years). Phe Hy, as well as the Phe and Tyr rate of appearance (Ra), were measured during L-[2H5]-Phe and L-[2H2]-Tyr continuous intravenous (i.v.) infusions both under basal postabsorptive conditions (N = 13) and following divergent changes of plasma aromatic amino acids (AAA) concentrations. Namely, AAA were increased by administration of a balanced synthetic mixed meal (n = 6) or selectively decreased by i.v. infusion of insulin along with a Phe-deficient, Tyr and tryptophan-deprived amino acid mixture ([IAA] n = 7). Following the meal, plasma Phe (54 +/- 3 to 81 +/- 12 micromol/L), plasma Tyr (54 +/- 4 to 91 +/- 7), Phe Hy (0.09 +/- 0.01 to 0.15 +/- 0.02 micromol/kg x min), Phe Ra (0.65 +/- 0.04 to 0.96 +/- 0.07), and Tyr Ra (0.51 +/- 0.03 to 0.93 +/- 0.11) all significantly increased (P < or = .05 v basal). IAA infusion significantly decreased plasma Phe (to 47 +/- 3 micromol/L), plasma Tyr (to 25 +/- 4), Phe Hy (to 0.07 +/- 0.004 micromol/kg x min), and Tyr Ra (to 0.29 +/- 0.02; all P < or = .05 v sal), while Phe Ra did not change (0.64 +/- 0.04, NS). Plasma glucagon did not change in the three experimental periods (basal, 85 +/- 7; meal, 72 +/- 10; IAA, 92 +/- 14 pg/mL; NS). Using linear regression analysis, plasma Phe was positively related to both Phe Hy (R2 = .76, P < .001) and plasma Tyr (R2 = .80, P < .001); Phe Hy and plasma Tyr were also significantly correlated (R2 = .60, P < .001). No correlation was found between Phe Hy and basal plasma glucagon (R2 = .04, NS). Using multiple regression analysis with plasma Tyr as the dependent variable, plasma Phe was still correlation with plasma Tyr (t = 4.29, P = .0002), while the relationship between Phe Hy and plasma Tyr was no longer significant (t = 0.69, P = .49). These data indicate that plasma Phe is closely associated with its own hydroxylative disposal in humans, and confirm that Phe conversion to Tyr may play a physiological role in maintaining balanced plasma phenylalanine and tyrosine concentrations.

Collaboration


Dive into the Monica Vettore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge