Monika A. Ward
University of Hawaii at Manoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika A. Ward.
Biology of Reproduction | 2003
Monika A. Ward; Takehito Kaneko; Hirokazu Kusakabe; John D. Biggers; David G. Whittingham; Ryuzo Yanagimachi
Abstract The widespread production of mice with transgenes, disrupted genes and mutant genes, has strained the resources available for maintaining these mouse lines as live populations, and dependable methods for gamete and embryo preservation in these lines are needed. Here we report the results of intracytoplasmic sperm injection (ICSI) with spermatozoa freeze-dried or frozen without a cryoprotectant after storage for periods up to 1.5 years. Freeze-dried samples were stored at 4°C. Samples frozen without cryoprotection were maintained at −196°C. After storage, spermatozoa were injected into the oocytes by ICSI. Zygotic chromosomes and fetal development at Day 15 of gestation were examined after 0, 1, 3, 6, 9, and 12 mo of sperm storage. When fresh spermatozoa were used for ICSI, 96% of resultant zygotes contained normal chromosomes, and 58% of two-cell embryos transferred developed to normal viable fetuses. Similar results were obtained when spermatozoa were frozen without cryoprotection and then used for ICSI (87% and 45%, respectively; P > 0.05) and after 12 mo of sperm storage (mean of six endpoints examined: 87% and 52%, respectively; P > 0.05). Freeze-drying decreased the proportion of zygotes with normal karyoplates (75% vs. 96%; P < 0.001) and the proportion of embryos that developed into fetuses (35% vs. 58%; P < 0.001), but similar to freezing, there was no further deterioration during 12 mo of storage (mean of six endpoints examined: 68% and 34%, respectively; P > 0.05). Live offspring were obtained from both freeze-dried and frozen spermatozoa after storage for 1.5 yr. The results indicate that 1) the freeze-drying procedure itself causes some abnormalities in spermatozoa but freezing without cryoprotection does not and 2) long-term storage of both frozen and freeze-dried spermatozoa is not deleterious to their genetic integrity. Freezing without cryoprotection is highly successful, simple, and efficient but, like all routine sperm storage methods, requires liquid nitrogen. Liquid nitrogen is also required for freeze-drying, but sperm can then be stored at 4°C and shipped at ambient temperatures. Both preservation methods are successful, but rapid freezing without cryoprotection is the preferred method for preservation of spermatozoa from mouse strains carrying unique genes and mutations.
PLOS Biology | 2009
Julie Cocquet; Peter J.I. Ellis; Yasuhiro Yamauchi; Shantha K. Mahadevaiah; Nabeel A. Affara; Monika A. Ward; Paul S. Burgoyne
Small-interfering RNAs have been used to disrupt the function of the more than 100 copies of the Sly gene on the mouse Y chromosome, leading to defective sex chromosome repression during spermatid differentiation and, as a consequence, sperm malformations and near-sterility.
Biology of Reproduction | 2006
Anna Ajduk; Yasuhiro Yamauchi; Monika A. Ward
Abstract Intracytoplasmic sperm injection (ICSI) is a popular method used in assisted conception, and live offspring have been born from a variety of species, including humans. In ICSI, sperm chromatin is introduced into the oocyte together with the acrosome, a structure that does not enter the oocyte during normal fertilization. We compared sperm chromatin remodeling, the potential of embryos to develop in vitro, and DNA synthesis in mouse embryos obtained from in vitro fertilization (IVF) and ICSI. We also tested whether sperm pretreatment prior to ICSI (i.e., capacitation, acrosome reaction, membrane removal, and reduction of disulfide bonds in protamines) facilitates chromatin remodeling and affects embryo development. Sperm chromatin was examined on air-dried, Giemsa-stained preparations at 30-min intervals for up to 4.5 h postfertilization. In all experimental groups, the oocytes underwent activation and formed pronuclei with similar rates. However, the dynamics of sperm chromatin remodeling in ICSI and IVF embryos varied. In ICSI, chromatin remodeling was more asynchronous than in IVF. Sperm capacitation prior to injection enhanced remodeling asynchrony and resulted in delayed pronuclei formation and DNA synthesis. The removal of the acrosome prior to injection with calcium ionophore A23187 but not with detergent Triton X-100 allowed more synchronous chromatin remodeling, timely DNA synthesis, and good embryo development. Our data have significance for the refinement of the molecular and biologic mechanisms associated with ICSI for current and future applications.
Reproduction, Fertility and Development | 2004
Monika A. Ward; W. Steven Ward
In this review, we present our recent evidence suggesting, but not yet proving, that mammalian spermatozoa contain a mechanism by which they can digest their own DNA when exposed to a stressful environment. We discuss our recent data that demonstrate that when mammalian spermatozoa are treated in a variety of ways, the paternal chromosomes in the zygote, or the sperm DNA itself, are degraded into large, chromosome-sized fragments. These published data support the existence of nuclease activity in spermatozoa. We suggest that this nuclease activity is part of a mechanism the spermatozoon uses when it encounters a stressful environment to prevent fertilisation and to avoid the transmission of potentially damaged DNA to the embryo. We propose a model based on sperm chromatin structure by which this nuclease can digest the highly condensed sperm chromatin.
PLOS ONE | 2013
Joanna E. Gawecka; Joel Marh; Michael A. Ortega; Yasuhiro Yamauchi; Monika A. Ward; W. Steven Ward
Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.
The Journal of Steroid Biochemistry and Molecular Biology | 2009
Abby C. Collier; Shogo John Miyagi; Yasuhiro Yamauchi; Monika A. Ward
The placenta plays a vital role in pregnancy by facilitating steroid passage from maternal to fetal circulation and/or direct production of hormones. Using a murine model, we demonstrated the differences in placental steroid metabolism between pregnancies conceived naturally and with assisted reproduction technologies (ART): in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). While the ovarian steroid production was similar (estrone, 17beta-estradiol) or higher (estriol) in ART pregnancies compared to mating, the levels of placental estriol were significantly lower in ART group. Placentas from ART had significantly higher activities of the steroid metabolizing enzymes UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT), which in ICSI were also coupled with decreased activity of the steroid regenerating enzymes beta-glucuronidase (beta-G) and aryl sulfatase (AS). Levels of steroid metabolites androstane-3alpha-17beta-diol glucuronide and dehydroepiandrosterone sulfate were higher in fetal compared to maternal blood in ART, but not in mating. This study demonstrates that in murine ART pregnancies, higher metabolism and clearance of steroids by the placenta may seriously affect the passage of essential hormones to the fetus. If a similar phenomenon exists in humans, this could provide a plausible explanation for obstetric and neonatal complications associated with ART, including the higher incidence of low birth weight babies.
Biology of Reproduction | 2006
Monika A. Ward; Paul S. Burgoyne
Abstract In mouse and man, Y chromosome deletions are frequently associated with spermatogenic defects. XYTdym1qdelSry males have an extensive Yq deletion that almost completely abolishes the expression of two gene families, Ssty and Sly, located within the male-specific region of the mouse Y long arm. These males exhibit severe sperm defects and sterility. XYRIIIqdel males have a smaller interstitial Yq deletion, removing approximately two thirds of Ssty/Sly gene copies, and display an increased incidence of mild sperm head anomalies with impairment of fertility and an intriguing distortion in the sex ratio of offspring in favor of females. Here we used intracytoplasmic sperm injection (ICSI) to investigate the functional capacity of sperm from these Yq deletion males. Any selection related to the ability of sperm to fertilize in vitro is removed by ICSI, and we obtained two generations of live offspring from the infertile males. Genotyping of ICSI-derived offspring revealed that the YTdym1qdel deletion does not interfere with production of Y chromosome-bearing gametes, as judged from the frequency of Y chromosome transmission to the offspring. ICSI results for XYRIIIqdel males also indicate that there is no deficiency of Y sperm production in this genotype, although the data show an excess of females following in vitro fertilization and natural mating. Our findings suggest that 1) Yq deletions in mice do not bias the primary sex ratio and 2) YRIIIqdel spermatozoa have poorer fertilizing ability than their X-bearing counterparts. Thus, a normal complement of the Ssty and/or Sly gene families on mouse Yq appears necessary for normal sperm function. Summary: ICSI was successfully used to reproduce infertile mice with Yq deletions, and the analysis of sperm function in obtained offspring demonstrated that gene families located within the deletion interval are necessary for normal sperm function.
Science | 2014
Yasuhiro Yamauchi; Jonathan M. Riel; Zoia Stoytcheva; Monika A. Ward
Why, Oh Y? The mammalian Y chromosome is a symbol of maleness and encodes genes important for male reproduction. Various deletions of the Y chromosome result in sperm defects and infertility. When haploid male germ cells were injected directly into oocytes, Yamauchi et al. (p. 69, published online 21 November; see the Perspective by Capel) found that living offspring could be derived from male mice whose Y chromosome contribution was limited to only two genes. These two genes are the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Live offspring can be obtained from male mice in which the Y chromosome contribution is limited to only two genes. The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.
Biology of Reproduction | 2007
Yasuhiro Yamauchi; Brendan Doe; Anna Ajduk; Monika A. Ward
Abstract Creating transgenic mammals is currently a very inefficient process. In addition to problems with transgene integration and unpredictable expression patterns of the inserted gene, embryo loss occurs at various developmental stages. In the present study, we demonstrate that this loss is due to chromosomal damage. We examined the integrity of chromosomes in embryos produced by microinjection of pronuclei, intracytoplasmic sperm injection (ICSI), and in vitro fertilization (IVF)-mediated transgenesis, and correlated these findings with the abilities of embryos to develop in vitro and yield transgenic morulas/blastocysts. Chromosomal analysis was performed after microinjection of the pronuclei in zygotes, as well as in parthenogenetic and androgenetic embryos. In all the pronuclei injection groups, significant oocyte arrest and increased incidence of chromosome breaks were observed after both transgenic DNA injection and sham injection. This indicates that the DNA damage is a transgene-independent effect. In ICSI-mediated transgenesis, there was no significant oocyte arrest. The observed chromosomal damage was lower than that after pronuclei microinjection in zygotes and was dependent upon the presence of exogenous DNA. The occurrence of DNA breaks, as measured by comet assay performed on the sperm prior to ICSI, showed that DNA damage was present in the sperm before fertilization. Embryonic development in vitro and transgene expression at the morula/blastocyst stage were higher in ICSI-mediated transgenesis than after microinjection of pronuclei into zygotes. Sperm-mediated gene transfer via IVF did not affect chromosome integrity, allowed good embryo development, but did not yield any transgenic embryos. The present study demonstrates that DNA damage occurs after both the microinjection of pronuclei and ICSI-mediated transgenesis, albeit through different mechanisms.
Molecular Biology of the Cell | 2010
Julie Cocquet; Peter J.I. Ellis; Yasuhiro Yamauchi; Jonathan M. Riel; Thomas P. S. Karacs; Áine Rattigan; Obah A. Ojarikre; Nabeel A. Affara; Monika A. Ward; Paul S. Burgoyne
Slx and Slxl1 are genes present in multiple copies on the mouse X chromosome. Using transgenically-delivered small interfering RNAs to disrupt their function, we show that Slx and Slxl1 are important for normal sperm differentiation and male fertility.