Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monika Oberer is active.

Publication


Featured researches published by Monika Oberer.


Progress in Lipid Research | 2011

Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores

Achim Lass; Robert Zimmermann; Monika Oberer; Rudolf Zechner

Summary Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5 years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic “lipolytic machinery”. Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the “lipolysome”. This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function.


Cell Metabolism | 2012

Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase

Manju Kumari; Gabriele Schoiswohl; Chandramohan Chitraju; Margret Paar; Irina Cornaciu; Ashraf Y. Rangrez; Nuttaporn Wongsiriroj; Harald M. Nagy; Pavlina T. Ivanova; Sarah A. Scott; Oskar L. Knittelfelder; Gerald N. Rechberger; Ruth Birner-Gruenberger; Sandra Eder; H. Alex Brown; Guenter Haemmerle; Monika Oberer; Achim Lass; Erin E. Kershaw; Robert Zimmermann; Rudolf Zechner

Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.


Cell | 2009

Topology and Regulation of the Human eIF4A/4G/4H Helicase Complex in Translation Initiation

Assen Marintchev; Katherine A. Edmonds; Boriana Marintcheva; Elthea Hendrickson; Monika Oberer; Chikako Suzuki; Barbara Herdy; Nahum Sonenberg; Gerhard Wagner

The RNA helicase eIF4A plays a key role in unwinding of mRNA and scanning during translation initiation. Free eIF4A is a poor helicase and requires the accessory proteins eIF4G and eIF4H. However, the structure of the helicase complex and the mechanisms of stimulation of eIF4A activity have remained elusive. Here we report the topology of the eIF4A/4G/4H helicase complex, which is built from multiple experimentally observed domain-domain contacts. Remarkably, some of the interactions are continuously rearranged during the ATP binding/hydrolysis cycle of the helicase. We show that the accessory proteins modulate the affinity of eIF4A for ATP by interacting simultaneously with both helicase domains and promoting either the closed, ATP-bound conformation or the open, nucleotide-free conformation. The topology of the complex and the spatial arrangement of the RNA-binding surfaces offer insights into their roles in stimulation of helicase activity and the mechanisms of mRNA unwinding and scanning.


Journal of Biological Chemistry | 2008

The C-terminal Region of Human Adipose Triglyceride Lipase Affects Enzyme Activity and Lipid Droplet Binding

Martina Schweiger; Gabriele Schoiswohl; Achim Lass; Franz P. W. Radner; Guenter Haemmerle; Roland Malli; Wolfgang F. Graier; Irina Cornaciu; Monika Oberer; Robert Salvayre; Judith Fischer; Rudolf Zechner; Robert A. Zimmermann

Adipose triglyceride lipase (ATGL) catalyzes the first step in the hydrolysis of triacylglycerol (TG) generating diacylglycerol and free fatty acids. The enzyme requires the activator protein CGI-58 (or ABHD5) for full enzymatic activity. Defective ATGL function causes a recessively inherited disorder named neutral lipid storage disease that is characterized by systemic TG accumulation and myopathy. In this study, we investigated the functional defects associated with mutations in the ATGL gene that cause neutral lipid storage disease. We show that these mutations lead to the expression of either inactive enzymes localizing to lipid droplets (LDs) or enzymatically active lipases with defective LD binding. Additionally, our studies assign important regulatory functions to the C-terminal part of ATGL. Truncated mutant ATGL variants lacking ∼220 amino acids of the C-terminal protein region do not localize to LDs. Interestingly, however, these mutants exhibit substantially increased TG hydrolase activity in vitro (up to 20-fold) compared with the wild-type enzyme, indicating that the C-terminal region suppresses enzyme activity. Protein-protein interaction studies revealed an increased binding of truncated ATGL to CGI-58, suggesting that the C-terminal part interferes with CGI-58 interaction and enzyme activation. Compared with the human enzyme, the C-terminal region of mouse ATGL is much less effective in suppressing enzyme activity, implicating species-dependent differences in enzyme regulation. Together, our results demonstrate that the C-terminal region of ATGL is essential for proper localization of the enzyme and suppresses enzyme activity.


Journal of Biological Chemistry | 2010

The N-terminal Region of Comparative Gene Identification-58 (CGI-58) Is Important for Lipid Droplet Binding and Activation of Adipose Triglyceride Lipase

Astrid Gruber; Irina Cornaciu; Achim Lass; Martina Schweiger; Margret Poeschl; Christina Eder; Manju Kumari; Gabriele Schoiswohl; Heimo Wolinski; Sepp D. Kohlwein; Rudolf Zechner; Robert Zimmermann; Monika Oberer

In mammals, excess energy is stored in the form of triacylglycerol primarily in lipid droplets of white adipose tissue. The first step of lipolysis (i.e. the mobilization of fat stores) is catalyzed by adipose triglyceride lipase (ATGL). The enzymatic activity of ATGL is strongly enhanced by CGI-58 (comparative gene identification-58), and the loss of either ATGL or CGI-58 function causes systemic triglyceride accumulation in humans and mice. However, the mechanism by which CGI-58 stimulates ATGL activity is unknown. To gain insight into CGI-58 function using structural features of the protein, we generated a three-dimensional homology model based on sequence similarity with other proteins. Interestingly, the model of CGI-58 revealed that the N terminus forms an extension of the otherwise compact structure of the protein. This N-terminal region (amino acids 1–30) harbors a lipophilic tryptophan-rich stretch, which affects the localization of the protein. 1H NMR experiments revealed strong interaction between the N-terminal peptide and dodecylphosphocholine micelles as a lipid droplet-mimicking system. A role for this N-terminal region of CGI-58 in lipid droplet binding was further strengthened by localization studies in cultured cells. Although wild-type CGI-58 localizes to the lipid droplet, the N-terminally truncated fragments of CGI-58 are dispersed in the cytoplasm. Moreover, CGI-58 lacking the N-terminal extension loses the ability to stimulate ATGL, implying that the ability of CGI-58 to activate ATGL is linked to correct localization. In summary, our study shows that the N-terminal, Trp-rich region of CGI-58 is essential for correct localization and ATGL-activating function of CGI-58.


Protein Science | 2007

The solution structure of ParD, the antidote of the ParDE toxin–antitoxin module, provides the structural basis for DNA and toxin binding

Monika Oberer; Klaus Zangger; Karl Gruber; Walter Keller

ParD is the antidote of the plasmid‐encoded toxin–antitoxin (TA) system ParD–ParE. These modules rely on differential stabilities of a highly expressed but labile antidote and a stable toxin expressed from one operon. Consequently, loss of the coding plasmid results in loss of the protective antidote and poisoning of the cell. The antidote protein usually also exhibits an autoregulatory function of the operon. In this paper, we present the solution structure of ParD. The repressor activity of ParD is mediated by the N‐terminal half of the protein, which adopts a ribbon‐helix‐helix (RHH) fold. The C‐terminal half of the protein is unstructured in the absence of its cognate binding partner ParE. Based on homology with other RHH proteins, we present a model of the ParD–DNA interaction, with the antiparallel β‐strand being inserted into the major groove of DNA. The fusion of the N‐terminal DNA‐binding RHH motif to the toxin‐binding unstructured C‐terminal domain is discussed in its evolutionary context.


Biochimica et Biophysica Acta | 2010

Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae.

Christoph Heier; Ulrike Taschler; Srinivasan Rengachari; Monika Oberer; Heimo Wolinski; Klaus Natter; Sepp D. Kohlwein; Regina Leber; Robert Zimmermann

Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Δ mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast.


Biochemical Journal | 2002

The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins.

Monika Oberer; Klaus Zangger; Stefan Prytulla; Walter Keller

NMR and CD spectroscopy have been used to characterize, both structurally and dynamically, the 82-amino-acid ParD protein of the post-segregational killing module of the broad-host-range plasmid RP4/RK2. ParD occurs as a dimer in solution and exercises two different control functions; an autoregulatory function by binding to its own promoter P(parDE) and a plasmid-stabilizing function by inhibiting ParE toxicity in cells that express ParD and ParE. Analysis of the secondary structure based on the chemical-shift indices, sequential nuclear Overhauser enhancements (NOEs) and (3)J(Halpha-NH) scalar coupling constants showed that the N-terminal domain of ParD consists of a short beta-ribbon followed by three alpha-helices, demonstrating that ParD contains a ribbon-helix-helix fold, a DNA-binding motif found in a family of small prokaryotic repressors. (15)N longitudinal (T(1)) and transverse (T(2)) relaxation measurements and hetero nuclear NOEs showed that ParD is divided into two separate domains, a well-ordered N-terminal domain and a very flexible C-terminal domain. An increase in secondary structure was observed upon addition of trifluoroethanol, suggested to result from the formation of structured stretches in the C-terminal part of the protein. This is the first experimental evidence that the DNA-binding domain of ParD belongs to the ribbon-helix-helix fold family, and this structural motif is proposed to be present in functionally similar antidote proteins.


Nature Communications | 2014

Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

Georg Steinkellner; Christian C. Gruber; Tea Pavkov-Keller; Alexandra Binter; Kerstin Steiner; Christoph K. Winkler; Andrzej Lyskowski; O. Schwamberger; Monika Oberer; Helmut Schwab; Kurt Faber; Peter Macheroux; Karl Gruber

The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts.


Biological Chemistry | 1999

Thermodynamic properties and DNA binding of the ParD protein from the broad host-range plasmid RK2/RP4 killing system.

Monika Oberer; Helmut Lindner; Otto Glatter; Christoph Kratky; Walter Keller

Abstract ParD is a small, acidic protein from the partitioning system of the plasmid RK2/RP4. The ParD protein exhibits specific DNA binding activity and, as the antidote component of a toxin-antidote plasmid addiction system, ParD forms a tight complex in solution with its toxin antagonist, the ParE protein. Unopposed ParE acts as a toxin that causes growth retardation and killing of plasmid cured cells. ParD negatively autoregulates its expression by binding to an operator sequence in the parDE promoter region. This DNA binding activity is crucial for the regulation of the relative abundance of toxin and antidote which ultimately determines life or death for the bacterial host and its daughter cells. In light scattering studies and gel filtration chromatography we observed the existence of a stable dimer of ParD in solution. The stoichiometry of ParD-DNA complex formation appeared to be 4:1, the molecular mass of the complex was 72.1 kDa. The α-helical content of ParD as determined by CD-spectrometry was 35%. The protein exhibited high thermostability with a TM of 64°C and ΔH of 25 kcal/mol as shown by differential scanning calorimetry. Upon complex formation the TM increased by 10°C. The thermal unfolding of the ParD protein was highly reversible as observed in repeated DSC scans of the same sample. The recovery of the native fold was proven by CDspectroscopy.

Collaboration


Dive into the Monika Oberer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge