Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monika Reissmann is active.

Publication


Featured researches published by Monika Reissmann.


Science | 2009

Coat Color Variation at the Beginning of Horse Domestication

Arne Ludwig; Mélanie Pruvost; Monika Reissmann; Norbert Benecke; Grudrun A. Brockmann; Pedro Castanos; Michael Cieslak; Sebastian Lippold; Laura Llorente; Anna-Sapfo Malaspinas; Montgomery Slatkin; Michael Hofreiter

As part of the domestication process, humans appear to have selectively bred color variants of horses. Not Just Dinner on Legs Several thousand years ago, human beings realized the virtues of domesticating wild animals as easy meat. Soon other possibilities became apparent, and as revealed in a series of papers in this issue, early pastoralists became selective about breeding for wool, leather, milk, and muscle power. In two papers, Gibbs et al. report on the bovine genome sequence (p. 522; see the cover, the Perspective by Lewin, and the Policy Forum by Roberts) and trace the diversity and genetic history of cattle (p. 528), while Chessa et al. (p. 532) survey the occurrence of endogenous retroviruses in sheep and map their distribution to historical waves of human selection and dispersal across Europe. Finally, Ludwig et al. (p. 485) note the origins of variation in the coat-color of horses and suggest that it is most likely to have been selected for by humans in need of good-looking transport. The transformation of wild animals into domestic ones available for human nutrition was a key prerequisite for modern human societies. However, no other domestic species has had such a substantial impact on the warfare, transportation, and communication capabilities of human societies as the horse. Here, we show that the analysis of ancient DNA targeting nuclear genes responsible for coat coloration allows us to shed light on the timing and place of horse domestication. We conclude that it is unlikely that horse domestication substantially predates the occurrence of coat color variation, which was found to begin around the third millennium before the common era.


PLOS ONE | 2010

Origin and History of Mitochondrial DNA Lineages in Domestic Horses

Michael Cieslak; Mélanie Pruvost; Norbert Benecke; Michael Hofreiter; Arturo Morales; Monika Reissmann; Arne Ludwig

Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability.


Biological Reviews | 2011

Colours of domestication

Michael Cieslak; Monika Reissmann; Michael Hofreiter; Arne Ludwig

During the last decade, coat colouration in mammals has been investigated in numerous studies. Most of these studies addressing the genetics of coat colouration were on domesticated animals. In contrast to their wild ancestors, domesticated species are often characterized by a huge allelic variability of coat‐colour‐associated genes. This variability results from artificial selection accepting negative pleiotropic effects linked with certain coat‐colour variants. Recent studies demonstrate that this selection for coat‐colour phenotypes started at the beginning of domestication. Although to date more than 300 genetic loci and more than 150 identified coat‐colour‐associated genes have been discovered, which influence pigmentation in various ways, the genetic pathways influencing coat colouration are still only poorly described. On the one hand, similar coat colourations observed in different species can be the product of a few conserved genes. On the other hand, different genes can be responsible for highly similar coat colourations in different individuals of a species or in different species. Therefore, any phenotypic classification of coat colouration blurs underlying differences in the genetic basis of colour variants. In this review we focus on (i) the underlying causes that have resulted in the observed increase of colour variation in domesticated animals compared to their wild ancestors, and (ii) the current state of knowledge with regard to the molecular mechanisms of colouration, with a special emphasis on when and where the different coat‐colour‐associated genes act.


PLOS ONE | 2013

Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse.

Rebecca R. Bellone; Heather M. Holl; Vijayasaradhi Setaluri; Sulochana Devi; Nityanand Maddodi; Sheila Archer; Lynne S. Sandmeyer; Arne Ludwig; Daniel W. Foerster; Mélanie Pruvost; Monika Reissmann; Ralf H. Bortfeldt; David L. Adelson; Sim Lin Lim; Janelle Nelson; Bianca Haase; Martina Engensteiner; Tosso Leeb; George W. Forsyth; Michael J. Mienaltowski; Padmanabhan Mahadevan; Michael Hofreiter; Johanna L. A. Paijmans; Gloria Gonzalez-Fortes; Bruce H. Grahn; Samantha A. Brooks

Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ2=1022.00, p<<0.0005), and CSNB, testing 43 horses (χ2=43, p<<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.


BMC Evolutionary Biology | 2011

Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

Sebastian Lippold; Nicholas J. Matzke; Monika Reissmann; Michael Hofreiter

BackgroundDNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets.ResultsIn this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago.ConclusionsOur study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool.


Seminars in Cell & Developmental Biology | 2013

Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals.

Monika Reissmann; Arne Ludwig

The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art

Mélanie Pruvost; Rebecca R. Bellone; Norbert Benecke; Edson Sandoval-Castellanos; Michael Cieslak; T. A. Kuznetsova; Arturo Morales-Muñiz; Terry O'Connor; Monika Reissmann; Michael Hofreiter; Arne Ludwig

Archaeologists often argue whether Paleolithic works of art, cave paintings in particular, constitute reflections of the natural environment of humans at the time. They also debate the extent to which these paintings actually contain creative artistic expression, reflect the phenotypic variation of the surrounding environment, or focus on rare phenotypes. The famous paintings “The Dappled Horses of Pech-Merle,” depicting spotted horses on the walls of a cave in Pech-Merle, France, date back ∼25,000 y, but the coat pattern portrayed in these paintings is remarkably similar to a pattern known as “leopard” in modern horses. We have genotyped nine coat-color loci in 31 predomestic horses from Siberia, Eastern and Western Europe, and the Iberian Peninsula. Eighteen horses had bay coat color, seven were black, and six shared an allele associated with the leopard complex spotting (LP), representing the only spotted phenotype that has been discovered in wild, predomestic horses thus far. LP was detected in four Pleistocene and two Copper Age samples from Western and Eastern Europe, respectively. In contrast, this phenotype was absent from predomestic Siberian horses. Thus, all horse color phenotypes that seem to be distinguishable in cave paintings have now been found to exist in prehistoric horse populations, suggesting that cave paintings of this species represent remarkably realistic depictions of the animals shown. This finding lends support to hypotheses arguing that cave paintings might have contained less of a symbolic or transcendental connotation than often assumed.


Animal Genetics | 2014

Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene

M. Promerová; Leif Andersson; R. Juras; M. C. T. Penedo; Monika Reissmann; T. Tozaki; Rebecca R. Bellone; S. Dunner; P. Hořín; Freyja Imsland; P. Imsland; Sofia Mikko; D. Modrý; Knut H. Røed; Doreen Schwochow; J. L. Vega-Pla; H. Mehrabani-Yeganeh; N. Yousefi-Mashouf; E.G. Cothran; Gabriella Lindgren

For centuries, domestic horses have represented an important means of transport and served as working and companion animals. Although their role in transportation is less important today, many horse breeds are still subject to intense selection based on their pattern of locomotion. A striking example of such a selected trait is the ability of a horse to perform additional gaits other than the common walk, trot and gallop. Those could be four-beat ambling gaits, which are particularly smooth and comfortable for the rider, or pace, used mainly in racing. Gaited horse breeds occur around the globe, suggesting that gaitedness is an old trait, selected for in many breeds. A recent study discovered that a nonsense mutation in DMRT3 has a major impact on gaitedness in horses and is present at a high frequency in gaited breeds and in horses bred for harness racing. Here, we report a study of the worldwide distribution of this mutation. We genotyped 4396 horses representing 141 horse breeds for the DMRT3 stop mutation. More than half (2749) of these horses also were genotyped for a SNP situated 32 kb upstream of the DMRT3 nonsense mutation because these two SNPs are in very strong linkage disequilibrium. We show that the DMRT3 mutation is present in 68 of the 141 genotyped horse breeds at a frequency ranging from 1% to 100%. We also show that the mutation is not limited to a geographical area, but is found worldwide. The breeds with a high frequency of the stop mutation (>50%) are either classified as gaited or bred for harness racing.


Animal Reproduction Science | 2013

Development of an in vitro index to characterize fertilizing capacity of boar ejaculates

M. Schulze; K. Ruediger; K. Mueller; M. Jung; C. Well; Monika Reissmann

The aim of this research was the selection of spermatozoa parameters related to boar fertility performance and their combination into an in vitro index. A first set (data set 1) of 36 Pietrain boars with 138 ejaculates from two seasons with 5083 single-sire inseminations from 34 farms was used to determine correlations between in vitro sperm quality parameters and fertility performance. 2970 ejaculates representing a second set (data set 2) served calculation of seasonal and age effects on semen quality. Morphological spermatozoa parameters were estimated manually with a phase contrast microscope on the day of semen collection, whereas mitochondrial activity and viability were analyzed by double-staining with rhodamine123/propidium iodide on day 2 of semen storage using flow cytometry. Sperm motility was tested on day 7 by thermoresistance (TRT) after 30min (TRT1) and 300min (TRT2) incubation at 38̊C using computer-assisted semen analysis (CASA). Correlations revealed four independent sperm quality parameters qualifying as relevant predictors of boar fertility: (i) percentage of spermatozoa with proximal cytoplasmic droplets, (ii) percentage of spermatozoa with active mitochondria, (iii) beat cross frequency of progressively motile spermatozoa in TRT1, and (iv) oscillation measure of the actual path of progressively motile spermatozoa in TRT2. There were no significant effects of sperm concentration, ejaculate volume, and total number of sperm cells per ejaculate on litter size (LS) and on pregnancy rate (PR). Our findings suggest the usefulness of sperm quality parameters based on adjusted range of methods and enable the construction of an in vitro index as a means to predicting boar fertility.


Philosophical Transactions of the Royal Society B | 2015

Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses

Arne Ludwig; Monika Reissmann; Norbert Benecke; Rebecca R. Bellone; Edson Sandoval-Castellanos; Michael Cieslak; Gloria G. Fortes; Arturo Morales-Muñiz; Michael Hofreiter; Mélanie Pruvost

Leopard complex spotting is inherited by the incompletely dominant locus, LP, which also causes congenital stationary night blindness in homozygous horses. We investigated an associated single nucleotide polymorphism in the TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleistocene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP spotting in Europe dates back to the Pleistocene. We tested for temporal changes in the LP associated allele frequency and estimated coefficients of selection by means of approximate Bayesian computation analyses. Our results show that at least some of the observed frequency changes are congruent with shifts in artificial selection pressure for the leopard complex spotting phenotype. In early domestic horses from Kirklareli–Kanligecit (Turkey) dating to 2700–2200 BC, a remarkably high number of leopard spotted horses (six of 10 individuals) was detected including one adult homozygote. However, LP seems to have largely disappeared during the late Bronze Age, suggesting selection against this phenotype in early domestic horses. During the Iron Age, LP reappeared, probably by reintroduction into the domestic gene pool from wild animals. This picture of alternating selective regimes might explain how genetic diversity was maintained in domestic animals despite selection for specific traits at different times.

Collaboration


Dive into the Monika Reissmann's collaboration.

Top Co-Authors

Avatar

Gudrun A. Brockmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Benecke

Deutsches Archäologisches Institut

View shared research outputs
Top Co-Authors

Avatar

Mélanie Pruvost

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ralf H. Bortfeldt

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Edson Sandoval-Castellanos

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Arturo Morales-Muñiz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Danny Arends

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge