Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf H. Bortfeldt is active.

Publication


Featured researches published by Ralf H. Bortfeldt.


PLOS ONE | 2013

Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse.

Rebecca R. Bellone; Heather M. Holl; Vijayasaradhi Setaluri; Sulochana Devi; Nityanand Maddodi; Sheila Archer; Lynne S. Sandmeyer; Arne Ludwig; Daniel W. Foerster; Mélanie Pruvost; Monika Reissmann; Ralf H. Bortfeldt; David L. Adelson; Sim Lin Lim; Janelle Nelson; Bianca Haase; Martina Engensteiner; Tosso Leeb; George W. Forsyth; Michael J. Mienaltowski; Padmanabhan Mahadevan; Michael Hofreiter; Johanna L. A. Paijmans; Gloria Gonzalez-Fortes; Bruce H. Grahn; Samantha A. Brooks

Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ2=1022.00, p<<0.0005), and CSNB, testing 43 horses (χ2=43, p<<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.


Journal of Dairy Science | 2014

Short communication: Validation of somatic cell score–associated loci identified in a genome-wide association study in German Holstein cattle

Hamdy Abdel-Shafy; Ralf H. Bortfeldt; Monika Reissmann; Gudrun A. Brockmann

Recently, we identified 6 genomic loci affecting daughter yield deviations (DYD) for somatic cell score (SCS) in a genome-wide association study (GWAS) performed with German Holstein bulls. In the current study, we tested if these loci were associated with SCS in cows using their own performance data. The study was performed with 1,412 German Holstein cows, of which 483 were daughters of 71 bulls that had been used in the GWAS. We tested 10 single nucleotide polymorphisms (SNP) representing 6 genomic regions that were associated with DYD for SCS in bulls. All tested SNP were significant in cows. Seven of them, located on Bos taurus autosomes (BTA) 6, 13, and 19, had the same direction of effect as those previously reported in the bull population. The most significant associations were detected on BTA6 and BTA19, accounting for 1.8% of the total genetic variance. The major allele of the 2 SNP on BTA6 and the minor allele of the 2 SNP on BTA19 were favorable for lower SCS. The differences between the homozygous genotype classes were up to 15,000 cells/mL. The verification of SNP associated with SCS in this study provides further evidence for the functional role of the linked genomic regions for immune response and contributes to identification of causative mutations. In particular, SNP with minor frequency of the favorable allele possess high potential to reduce SCS in German Holstein cattle by selection.


Metabolomics | 2014

Changes in metabolite profiles caused by genetically determined obesity in mice

Nadine Schäfer; Zhonghao Yu; Asja Wagener; Marion K. Millrose; Monika Reissmann; Ralf H. Bortfeldt; Christoph Dieterich; Jerzy Adamski; Rui Wang-Sattler; Thomas Illig; Gudrun A. Brockmann

The Berlin Fat Mouse Inbred (BFMI) line harbors a major recessive gene defect on chromosome 3 (jobes1) leading to juvenile obesity and metabolic syndrome. The present study aimed at the identification of metabolites that might be linked to recessively acting genes in the obesity locus. Firstly, serum metabolites were analyzed between obese BFMI and lean B6 and BFMI × B6 F1 mice to identify metabolites that are different. In a second step, a metabolite–protein network analysis was performed linking metabolites typical for BFMI mice with genes of the jobes1 region. The levels of 22 diacyl-phosphatidylcholines (PC aa), two lyso-PC and three carnitines were found to be significantly lower in obese mice compared with lean mice, while serine, glycine, arginine and hydroxysphingomyelin were higher for the same comparison. The network analysis identified PC aa C42:1 as functionally linked with the genes Ccna2 and Trpc3 via the enzymes choline kinase alpha and phospholipase A2 group 1B (PLA2G1B), respectively. Gene expression analysis revealed elevated Ccna2 expression in adipose tissue of BFMI mice. Furthermore, unique mutations were found in the Ccna2 promoter of BFMI mice which are located in binding sites for transcription factors or micro RNAs and could cause differential Ccna2 mRNA levels between BFMI and B6 mice. Increased expression of Ccna2 was consistent with higher mitotic activity of adipose tissue in BFMI mice. Therefore, we suggest a higher demand for PC necessary for adipose tissue growth and remodeling. This study highlights the relationship between metabolite profiles and the underlying genetics of obesity in the BFMI line.


Animal Genetics | 2012

Genome‐wide associations for investigating time‐dependent genetic effects for milk production traits in dairy cattle

E.M. Strucken; Ralf H. Bortfeldt; Dirk-Jan de Koning; Gudrun A. Brockmann

Phenotypic variation in milk production traits has been described over the course of a lactation as well as between different parities. The objective of this study was to investigate whether variation in production is affected by different loci across lactations. A genome-wide association study (GWAS) using a 50-k SNP chip was conducted in 152 divergent German Holstein Friesian cows to test for association with milk production traits over different lactations. The first four lactations were analysed regarding milk yield, fat, protein, lactose, milk urea nitrogen yield and content as well as somatic cell score. Two approaches were used: (i) Wilmink curve parameters were used to assess the genetic effects over the course of a lactation and (ii) test-day yield deviations (YD) were used as a normative approach for a GWAS. The significant effects were largest for markers affecting curve parameters for which there was a statistical power <0.8 of detection even in this small design. While significant markers for YDs were detected in this study, the power to detect effects of a similar magnitude was only 0.11, suggesting that many loci may have been missed with this approach in the present design. Furthermore, all significant effects were specific for a single lactation, leading to the conclusion that the variance explained by a certain locus changes from lactation to lactation. We confirm the common evidence that most production traits vary in the degree of persistency after the peak as a result of genetic influence.


BMC Genetics | 2012

Genetic effects and correlations between production and fertility traits and their dependency on the lactation-stage in Holstein Friesians

Eva M. Strucken; Ralf H. Bortfeldt; Jens Tetens; G. Thaller; Gudrun A. Brockmann

BackgroundThis study focused on the dynamics of genome-wide effects on five milk production and eight fertility traits as well as genetic correlations between the traits. For 2,405 Holstein Friesian bulls, estimated breeding values (EBVs) were used. The production traits were additionally assessed in 10-day intervals over the first 60 lactation days, as this stage is physiologically the most crucial time in milk production.ResultsSNPs significantly affecting the EBVs of the production traits could be separated into three groups according to the development of the size of allele effects over time: 1) increasing effects for all traits; 2) decreasing effects for all traits; and 3) increasing effects for all traits except fat yield. Most of the significant markers were found within 22 haplotypes spanning on average 135,338 bp. The DGAT1 region showed high density of significant markers, and thus, haplotype blocks. Further functional candidate genes are proposed for haplotype blocks of significant SNPs (KLHL8, SICLEC12, AGPAT6 and NID1). Negative genetic correlations were found between yield and fertility traits, whilst content traits showed positive correlations with some fertility traits. Genetic correlations became stronger with progressing lactation. When correlations were estimated within genotype classes, correlations were on average 0.1 units weaker between production and fertility traits when the yield increasing allele was present in the genotype.ConclusionsThis study provides insight into the expression of genetic effects during early lactation and suggests possible biological explanations for the presented time-dependent effects. Even though only three markers were found with effects on fertility, the direction of genetic correlations within genotype classes between production and fertility traits suggests that alleles increasing the milk production do not affect fertility in a more negative way compared to the decreasing allele.


Omics A Journal of Integrative Biology | 2011

Where in the genome are significant single nucleotide polymorphisms from genome-wide association studies located?

Torsten Günther; Armin O. Schmitt; Ralf H. Bortfeldt; Anke Hinney; Johannes Hebebrand; Gudrun A. Brockmann

Recent technological progress has permitted the efficient performance of genome-wide association studies (GWAS) to map genetic variants associated with common diseases. Here, we analyzed 2,893 single nucleotide polymorphisms (SNPs) that have been identified in 593 published GWAS as associated with a disease phenotype with respect to their genomic location. In absolute numbers, most significant SNPs are located in intergenic regions and introns. When compared to their representation on the chips, there is essentially overrepresentation of nonsynonymous coding SNPs (nsSNPs), synonymous coding SNPs, and SNPs in untranscribed regions upstream of genes among the disease associated SNPs. A Gene Ontology term analysis showed that genes putatively causing a phenotype often code for membrane associated proteins or signal transduction genes.


Mammalian Genome | 2009

RandoMate: a program for the generation of random mating schemes for small laboratory animals.

Armin O. Schmitt; Ralf H. Bortfeldt; Christina Neuschl; Gudrun A. Brockmann

Advanced intercross lines (AIL) have proven to be a powerful tool in genetic research to map complex genetic traits. The advantage of AIL is the high enrichment of visible recombination events to fine map the position of the target gene. Therefore, AIL are generated under the avoidance of inbreeding. We developed an online software tool, RandoMate, that generates random mating schemes such that only animals from different families are paired. When animals have to be selected randomly for mating, RandoMate optimizes the mating scheme such that all families contribute equally to the next generation. RandoMate uses a divide-and-conquer algorithm to define a mating scheme without brother-sister matings for all animals of a generation. If not all animals can be considered for the next generation, the mating scheme maximizes the randomness of the occurrences of animals from their families to make the family contributions as equal as possible. RandoMate is freely available at http://www2.hu-berlin.de/RandoMate.


Applied and Environmental Microbiology | 2016

Feeding of Enterococcus faecium NCIMB 10415 Leads to Intestinal miRNA-423-5p-Induced Regulation of Immune-Relevant Genes

Susanne Kreuzer-Redmer; Jennifer C. Bekurtz; Danny Arends; Ralf H. Bortfeldt; Barbara Kutz-Lohroff; Soroush Sharbati; Ralf Einspanier; Gudrun A. Brockmann

ABSTRACT Probiotics are widely used in human and animal health, but little is known about the mode of action of probiotics. One possible mechanism at the molecular level could be an influence on microRNAs (miRNAs) and the related immune-relevant target genes. Here, we analyzed differential expression of miRNA and potential target genes of ileal and jejunal lymphatic tissues from Enterococcus faecium NCIMB 10415-fed piglets versus untreated controls by using next-generation sequencing. We identified miR-423-5p as being greatly affected by the treatment group (2.32-fold; P = 0.014). Validation by reverse transcription-quantitative PCR (RT-qPCR) confirmed a significant upregulation of miR-423-5p (2.11-fold; P = 0.03) and, additionally, downregulation of the important immune-relevant immunoglobulin lambda light C region (IGLC) (0.61-fold; P = 0.03) and immunoglobulin kappa constant (IGKC) (0.69-fold; P = 0.04) target genes. Expression analysis of miR-423-5p and IGLC at different age points shows a clear anticorrelated relationship. Luciferase reporter assays with a HeLa cell line verified IGLC as a target of miR-423-5p. The results provided evidence for an effect of feeding of E. faecium on the expression of miR-423-5p and on the regulation of the IGLC gene through miR-423-5p. This might be a possible mode of action of E. faecium on immune cell regulation in the small intestine.


PLOS ONE | 2013

Impact of Variation at the FTO Locus on Milk Fat Yield in Holstein Dairy Cattle

Lea G. Zielke; Ralf H. Bortfeldt; Monika Reissmann; Jens Tetens; G. Thaller; Gudrun A. Brockmann

This study explores the biological role of the Fat Mass and Obesity associated (FTO) gene locus on milk composition in German Holstein cattle. Since FTO controls energy homeostasis and expenditure and the FTO locus has repeatedly shown association with obesity in human studies, we tested FTO as a candidate gene in particular for milk fat yield, which represents a high amount of energy secreted during lactation. The study was performed on 2,402 bulls and 860 cows where dense milk composition data were available. Genetic information was taken from a 2 Mb region around FTO. Five SNPs and two haplotype blocks in a 725 kb region covering FTO and the neighboring genes RPGRIP1L, U6ATAC, and 5 S rRNA were associated with milk fat yield and also affected protein yield in the same direction. Interestingly, higher frequency SNP alleles and haplotypes within the FTO gene increased milk fat and protein yields by up to 2.8 and 2.2 kg per lactation, respectively, while the most frequent haplotype in the upstream block covering exon 1 of FTO to exon 15 of RPGRIP1L had opposite effects with lower fat and milk yield. Both haplotype blocks were also significant in cows. The loci accounted for about 1% of the corresponding trait variance in the population. The association signals not only provided evidence for at least two causative mutations in the FTO locus with a functional effect on milk but also milk protein yield. The pleiotropic effects suggest a biological function on the usage of energy resources and the control of energy balance rather than directly affecting fat and protein synthesis. The identified effect of the obesity gene locus on milk energy content suggests an impact on infant nutrition by breast feeding in humans.


BMC Genomics | 2010

Tracking chromosomal positions of oligomers - a case study with Illumina's BovineSNP50 beadchip

Armin O. Schmitt; Ralf H. Bortfeldt; Gudrun A. Brockmann

BackgroundHigh density genotyping arrays have become established as a valuable research tool in human genetics. Currently, more than 300 genome wide association studies were published for human reporting about 1,000 SNPs that are associated with a phenotype. Also in animal sciences high density genotyping arrays are harnessed to analyse genetic variation. To exploit the full potential of this technology single nucleotide polymorphisms (SNPs) on the chips should be well characterized and their chromosomal position should be precisely known. This, however, is a challenge if the genome sequence is still subject to changes.ResultsWe have developed a mapping strategy and a suite of software scripts to update the chromosomal positions of oligomer sequences used for SNP genotyping on high density arrays. We describe the mapping procedure in detail so that scientists with moderate bioinformatics skills can reproduce it. We furthermore present a case study in which we re-mapped 54,001 oligomer sequences from Iluminas BovineSNP50 beadchip to the bovine genome sequence. We found in 992 cases substantial discrepancies between the manufacturers annotations and our results. The software scripts in the Perl and R programming languages are provided as supplements.ConclusionsThe positions of oligomer sequences in the genome are volatile even within one build of the genome. To facilitate the analysis of data from a GWAS or from an expression study, especially with species whose genome assembly is still unstable, it is recommended to update the oligomer positions before data analysis.

Collaboration


Dive into the Ralf H. Bortfeldt's collaboration.

Top Co-Authors

Avatar

Gudrun A. Brockmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Reissmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Armin O. Schmitt

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lea G. Zielke

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Danny Arends

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jens Aßmus

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

A. Said Ahmed

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge