Monique Smeets
St. Vincent's Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monique Smeets.
Journal of Biological Chemistry | 2012
Sabine Jurado; Lindus A Conlan; Emma K. Baker; Jane-Lee Ng; Nora Tenis; Nicolas C. Hoch; Kimberly Gleeson; Monique Smeets; David J. Izon; Joerg Heierhorst
Background: The regulation of multi-functional DYNLL1 is poorly understood. Results: ASCIZ activates Dynll1 gene expression and is inhibited by DYNLL1 binding to its transcription activation domain. Conclusion: ASCIZ plays a key role in the auto-regulation of DYNLL1 levels. Significance: This is the first case where a gene product directly inhibits its main transcriptional activator while bound at its own promoter. The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1s own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn2+ finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn2+ finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.
PLOS Genetics | 2015
Mannu K. Walia; Monique Smeets; Anthony J. Mutsaers; Natalie A. Sims; Louise E. Purton; Nicole C. Walsh; T. John Martin; Carl R. Walkley
RECQL4 mutations are associated with Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome. These patients display a range of benign skeletal abnormalities such as low bone mass. In addition, RTS patients have a highly increased incidence of osteosarcoma (OS). The role of RECQL4 in normal adult bone development and homeostasis is largely uncharacterized and how mutation of RECQL4 contributes to OS susceptibility is not known. We hypothesised that Recql4 was required for normal skeletal development and both benign and malignant osteoblast function, which we have tested in the mouse. Recql4 deletion in vivo at the osteoblastic progenitor stage of differentiation resulted in mice with shorter bones and reduced bone volume, assessed at 9 weeks of age. This was associated with an osteoblast intrinsic decrease in mineral apposition rate and bone formation rate in the Recql4-deficient cohorts. Deletion of Recql4 in mature osteoblasts/osteocytes in vivo, however, did not cause a detectable phenotype. Acute deletion of Recql4 in primary osteoblasts or shRNA knockdown in an osteoblastic cell line caused failed proliferation, accompanied by cell cycle arrest, induction of apoptosis and impaired differentiation. When cohorts of animals were aged long term, the loss of Recql4 alone was not sufficient to initiate OS. We then crossed the Recql4fl/fl allele to a fully penetrant OS model (Osx-Cre p53fl/fl). Unexpectedly, the Osx-Cre p53fl/flRecql4fl/fl (dKO) animals had a significantly increased OS-free survival compared to Osx-Cre p53fl/fl or Osx-Cre p53fl/flRecql4fl/+ (het) animals. The extended survival was explained when the Recql4 status in the tumors that arose was assessed, and in no case was there complete deletion of Recql4 in the dKO OS. These data provide a mechanism for the benign skeletal phenotypes of RECQL4 mutation syndromes. We propose that tumor suppression and osteosarcoma susceptibility are most likely a function of mutant, not null, alleles of RECQL4.
Journal of Clinical Investigation | 2014
Monique Smeets; Elisabetta DeLuca; Meaghan Wall; Julie M. Quach; Alistair M. Chalk; Andrew J. Deans; Jörg Heierhorst; Louise E. Purton; David J. Izon; Carl R. Walkley
Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.
PLOS ONE | 2013
Monique Smeets; Angela C. Chan; Samantha A. Dagger; Cara K. Bradley; Andrew Wei; David J. Izon
The Ets transcription factor Fli-1 is preferentially expressed in hematopoietic tissues and cells, including immature T cells, but the role of Fli-1 in T cell development has not been closely examined. To address this we retrovirally overexpressed Fli-1 in various in vitro and in vivo settings and analysed its effect on T cell development. We found that Fli-1 overexpression perturbed the DN to DP transition and inhibited CD4 development whilst enhancing CD8 development both in vitro and in vivo. Surprisingly, Fli-1 overexpression in vivo eventuated in development of pre-T cell lymphoblastic leukaemia/lymphoma (pre-T LBL). Known Fli-1 target genes such as the pro-survival Bcl-2 family members were not found to be upregulated. In contrast, we found increased NOTCH1 expression in all Fli-1 T cells and detected Notch1 mutations in all tumours. These data show a novel function for Fli-1 in T cell development and leukaemogenesis and provide a new mouse model of pre-T LBL to identify treatment options that target the Fli-1 and Notch1 signalling pathways.
Scientific Reports | 2015
Maria Askmyr; Kirby E. White; Tanja Jovic; Hannah A. King; Julie M. Quach; Ana C. Maluenda; Emma K. Baker; Monique Smeets; Carl R. Walkley; Louise E. Purton
The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf−/− mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf−/− mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf−/− BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner.
International Immunology | 2013
Monique Smeets; Charley Mackenzie-Kludas; Mahmood Mohtashami; Hui-Hua Zhang; Juan Carlos Zúñiga-Pflücker; David J. Izon
The majority of T-cell development occurs in the thymus. Thymic epithelial cells are specialized cells that express NOTCH ligands and secrete specific cytokines required for normal T-cell lymphopoiesis. It has been demonstrated that OP9 cells derived from macrophage colony-stimulating factor (M-CSF)-deficient mice can support T-cell development when transduced with a NOTCH ligand, Delta-like 1 (Dll1). In this report, we have tested CSF-deficient mouse fibroblasts transduced with Dll1 for their ability to support T-cell differentiation. The data provided here demonstrate that CSF-deficient fibroblasts expressing DLL1 can support T-cell development. Indeed, co-cultures with these fibroblasts produced more T-cell progenitors compared with OP9-DL1 cultures. Addition of myeloid cytokines to OP9-DL1 co-cultures significantly inhibited T-cell development while CSF-deficient DLL1(+) fibroblasts retained partial T-cell differentiation. Taken together, these data imply that their lack of myeloid cytokines allows DLL1(+) fibroblasts to more efficiently generate T-cells. Development of this fibroblast system suggests that there is potential for generating human T-cell precursors via co-culture with human fibroblasts expressing DLL1 or DLL4. These T-cell precursors could be used for treating immunodeficient patients.
European Journal of Immunology | 2014
Monique Smeets; David L. Wiest; David J. Izon
Friend leukemia integration 1 (Fli‐1) is a member of the Ets transcription factor family and is expressed during T‐cell development; however, the role Fli‐1 plays in early T‐cell differentiation has not been elucidated. In this report, we demonstrate that in mouse, Fli‐1 overexpression retards the CD4−CD8− double‐negative (DN) to CD4+CD8+ double‐positive (DP) transition by deregulating normal DN thymocyte development. Specifically, Fli‐1 expression moderates the DN2 and DN3 developmental transitions. We further show that Fli‐1 overexpression partially mimics strong TCR signals in developing DN thymocytes and thereby enhances γδ T‐cell development. Conversely, Fli‐1 knockdown by small hairpin RNA reverses the lineage bias from γδ T cells and directs DN cells to the αβ lineage by attenuating TCR signaling. Therefore, Fli‐1 plays a critical role in both the DN2 to DN3 transition and αβ/γδ lineage commitment.
Blood | 2007
Joachim R. Göthert; R.L. Brake; Monique Smeets; U. Duhrsen; C.G. Begley; David J. Izon
Experimental Hematology | 2018
Jane Jialu Xu; Monique Smeets; Shuh Ying Tan; Alistair M. Chalk; Scott Taylor; Meaghan Wall; Louise E. Purton; Carl R. Walkley
World Journal of Hepatology | 2016
Shuh Ying Tan; Monique Smeets; Alistair M. Chalk; Harshal Nandurkar; Carl R. Walkley; Louise E. Purton; Meaghan Wall