Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monir Shababi is active.

Publication


Featured researches published by Monir Shababi.


Human Molecular Genetics | 2010

Spinal muscular atrophy: mechanisms and therapeutic strategies

Christian L. Lorson; Hansjörg Rindt; Monir Shababi

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and a leading genetic cause of infantile mortality. SMA is caused by mutation or deletion of Survival Motor Neuron-1 (SMN1). The clinical features of the disease are caused by specific degeneration of alpha-motor neurons in the spinal cord, leading to muscle weakness, atrophy and, in the majority of cases, premature death. A highly homologous copy gene (SMN2) is retained in almost all SMA patients but fails to generate adequate levels of SMN protein due to its defective splicing pattern. The severity of the SMA phenotype is inversely correlated with SMN2 copy number and the level of full-length SMN protein produced by SMN2 ( approximately 10-15% compared with SMN1). The natural history of SMA has been altered over the past several decades, primarily through supportive care measures, but an effective treatment does not presently exist. However, the common genetic etiology and recent progress in pre-clinical models suggest that SMA is well-suited for the development of therapeutic regimens. We summarize recent advances in translational research that hold promise for the progression towards clinical trials.


Human Molecular Genetics | 2010

Cardiac defects contribute to the pathology of spinal muscular atrophy models

Monir Shababi; Javad Habibi; Hsiao T. Yang; Spencer M. Vale; Will A. Sewell; Christian L. Lorson

Spinal muscular atrophy (SMA) is an autosomal recessive disorder, which is the leading genetic cause of infantile death. SMA is the most common inherited motor neuron disease and occurs in approximately 1:6000 live births. The gene responsible for SMA is called Survival Motor Neuron-1 (SMN1). Interestingly, a human-specific copy gene is present on the same region of chromosome 5q, called SMN2. Motor neurons are the primary tissue affected in SMA. Although it is clear that SMA is a neurodegenerative disease, there are clinical reports that suggest that other tissues contribute to the overall phenotype, especially in the most severe forms of the disease. In severe SMA cases, a growing number of congenital heart defects have been identified upon autopsy. The most common defect is a developmental defect referred to as hypoplastic left heart. The purpose of this report is to determine whether cardiac tissue is altered in SMA models and whether this could contribute to SMA pathogenesis. Here we identified early-stage developmental defects in a severe model of SMA. Additionally, pathological responses including fibrosis and oxidative stress markers were observed shortly after birth in a less severe model of disease. Similarly, functional differences were detected between wild-type and early-stage SMA animals. Collectively, this work demonstrates the importance of cardiac development and function in these severe models of SMA.


Journal of Anatomy | 2014

Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?

Monir Shababi; Christian L. Lorson; Sabine S. Rudnik-Schöneborn

Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is the leading genetic cause of infantile death. SMA is characterized by loss of motor neurons in the ventral horn of the spinal cord, leading to weakness and muscle atrophy. SMA occurs as a result of homozygous deletion or mutations in Survival Motor Neuron‐1 (SMN1). Loss of SMN1 leads to a dramatic reduction in SMN protein, which is essential for motor neuron survival. SMA disease severity ranges from extremely severe to a relatively mild adult onset form of proximal muscle atrophy. Severe SMA patients typically die mostly within months or a few years as a consequence of respiratory insufficiency and bulbar paralysis. SMA is widely known as a motor neuron disease; however, there are numerous clinical reports indicating the involvement of additional peripheral organs contributing to the complete picture of the disease in severe cases. In this review, we have compiled clinical and experimental reports that demonstrate the association between the loss of SMN and peripheral organ deficiency and malfunction. Whether defective peripheral organs are a consequence of neuronal damage/muscle atrophy or a direct result of SMN loss will be discussed.


PLOS ONE | 2008

Development of a Single Vector System that Enhances Trans-Splicing of SMN2 Transcripts

Tristan H. Coady; Travis D. Baughan; Monir Shababi; Marco A. Passini; Christian L. Lorson

RNA modalities are developing as a powerful means to re-direct pathogenic pre-mRNA splicing events. Improving the efficiency of these molecules in vivo is critical as they move towards clinical applications. Spinal muscular atrophy (SMA) is caused by loss of SMN1. A nearly identical copy gene called SMN2 produces low levels of functional protein due to alternative splicing. We previously reported a trans-splicing RNA (tsRNA) that re-directed SMN2 splicing. Now we show that reducing the competition between endogenous splices sites enhanced the efficiency of trans-splicing. A single vector system was developed that expressed the SMN tsRNA and a splice-site blocking antisense (ASO-tsRNA). The ASO-tsRNA vector significantly elevated SMN levels in primary SMA patient fibroblasts, within the central nervous system of SMA mice and increased SMN-dependent in vitro snRNP assembly. These results demonstrate that the ASO-tsRNA strategy provides insight into the trans-splicing mechanism and a means of significantly enhancing trans-splicing activity in vivo.


Human Gene Therapy | 2011

Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy.

Monir Shababi; Jacqueline J. Glascock; Christian L. Lorson

Spinal muscular atrophy (SMA), a neurodegenerative disease, is the second most common genetic disorder and the leading genetic cause of infantile death. SMA arises from the loss of Survival Motor Neuron-1 (SMN1), leading to degeneration of lower motor neurons and, consequently, the atrophy of voluntary muscles. A duplicated copy gene called SMN2 exists in humans. SMN2 is unable to fully compensate for the loss of SMN1 because it produces very low levels of functional SMN protein due to an alternative splicing event. A C/T transition in SMN2 exon 7 results in a transcript lacking exon 7 and, therefore, creates a truncated SMN protein that cannot fully compensate for the loss of SMN1. However, SMN2 is an ideal target for therapeutic strategies that redirect this critical splicing event. Previously, we developed the first trans-splicing strategy to increase the full-length mRNA and functional SMN protein from the SMN2 gene. To improve the trans-splicing efficacy, we then developed a single-vector system that expressed a trans-splicing RNA (tsRNA) and an antisense blocking the downstream splice site. This single vector greatly enhanced trans-splicing of SMN2 transcripts in vitro and in vivo. In this report, we have added a neurotrophic factor [insulin-like growth factor (IGF)-1] to this single vector to determine whether neuroprotection and SMN induction provide greater protection in an SMA animal model. Intracerebroventricular injection of the trans-splicing/IGF vector significantly increased SMN protein in brain and spinal cord of SMAΔ7 mice and lessened the severity of disease in a more severe mouse model as evidenced by an extension of life span and increased body mass.


Biochemical and Biophysical Research Communications | 2012

Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of Spinal Muscular Atrophy

Jacqueline J. Glascock; Monir Shababi; Mary J. Wetz; Megan M. Krogman; Christian L. Lorson

Spinal Muscular Atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). SMA, however, is not due to complete absence of SMN, rather a low level of functional full-length SMN is produced by a nearly identical copy gene called SMN2. Despite SMNs ubiquitous expression, motor neurons are preferentially affected by low SMN levels. Recently gene replacement strategies have shown tremendous promise in animal models of SMA. In this study, we used self-complementary Adeno Associated Virus (scAAV) expressing full-length SMN cDNA to compare two different routes of viral delivery in a severe SMA mouse model. This was accomplished by injecting scAAV9-SMN vector intravenously (IV) or intracerebroventricularly (ICV) into SMA mice. Both routes of delivery resulted in a significant increase in lifespan and weight compared to untreated mice with a subpopulation of mice surviving more than 200days. However, the ICV injected mice gained significantly more weight than their IV treated counterparts. Likewise, survival analysis showed that ICV treated mice displayed fewer early deaths than IV treated animals. Collectively, this report demonstrates that route of delivery is a crucial component of gene therapy treatment for SMA.


Journal of Visualized Experiments | 2011

Delivery of Therapeutic Agents Through Intracerebroventricular (ICV) and Intravenous (IV) Injection in Mice

Jacqueline J. Glascock; Erkan Y. Osman; Tristan H. Coady; Ferrill F. Rose; Monir Shababi; Christian L. Lorson

Despite the protective role that blood brain barrier plays in shielding the brain, it limits the access to the central nervous system (CNS) which most often results in failure of potential therapeutics designed for neurodegenerative disorders. Neurodegenerative diseases such as Spinal Muscular Atrophy (SMA), in which the lower motor neurons are affected, can benefit greatly from introducing the therapeutic agents into the CNS. The purpose of this video is to demonstrate two different injection paradigms to deliver therapeutic materials into neonatal mice soon after birth. One of these methods is injecting directly into cerebral lateral ventricles (Intracerebroventricular) which results in delivery of materials into the CNS through the cerebrospinal fluid. The second method is a temporal vein injection (intravenous) that can introduce different therapeutics into the circulatory system, leading to systemic delivery including the CNS. Widespread transduction of the CNS is achievable if an appropriate viral vector and viral serotype is utilized. Visualization and utilization of the temporal vein for injection is feasible up to postnatal day 6. However, if the delivered material is intended to reach the CNS, these injections should take place while the blood brain barrier is more permeable due to its immature status, preferably prior to postnatal day 2. The fully developed blood brain barrier greatly limits the effectiveness of intravenous delivery. Both delivery systems are simple and effective once the surgical aptitude is achieved. They do not require any extensive surgical devices and can be performed by a single person. However, these techniques are not without challenges. The small size of postnatal day 2 pups and the subsequent small target areas can make the injections difficult to perform and initially challenging to replicate.


Journal of Molecular and Cellular Cardiology | 2012

Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy

Monir Shababi; Javad Habibi; Lixin Ma; Jacqueline J. Glascock; James R. Sowers; Christian L. Lorson

Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death. Loss of a gene called Survival Motor Neuron 1 (SMN1) and, as a result, reduced levels of the Survival Motor Neuron (SMN) protein leads to SMA development. SMA is characterized by the loss of functional motor neurons in the spinal cord. However, accumulating evidence suggests the contribution of other organs to the composite SMA phenotype and disease progression. A growing number of congenital heart defects have been identified in severe SMA patients. Consistent with the clinical cases, we have recently identified developmental and functional heart defects in two SMA mouse models, occurring at embryonic stage in a severe SMA model and shortly after birth in a less severe model (SMN∆7). Our goal was to examine the late stage cardiac abnormalities in untreated SMN∆7 mice and to determine whether gene replacement therapy restores cardiac structure/function in rescued SMN∆7 model. To reveal the extent of the cardiac structural/functional repair in the rescued mice, we analyzed the heart of untreated and treated SMN∆7 model using self-complementary Adeno-associated virus (serotype 9) expressing the full-length SMN cDNA. We examined the characteristics of the heart failure such as remodeling, fibrosis, oxidative stress, and vascular integrity in both groups. Our results clearly indicate that fibrosis, oxidative stress activation, vascular remodeling, and a significant decrease in the number of capillaries exist in the SMA heart. The cardiac structural defects were improved drastically in the rescued animals, however, the level of impairment was still significant compared to the age-matched wildtype littermates. Furthermore, functional analysis by in vivo cardiac magnetic resonance imaging (MRI) revealed that the heart of the treated SMA mice still exhibits functional defects. In conclusion, cardiac abnormalities are only partially rescued in post-birth treated SMA animals and these abnormalities may contribute to the premature death of vector-treated SMA animals with seemingly rescued motor function but an average life span of less than 70 days as reported in several studies.


Human Molecular Genetics | 2013

Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy

Melissa S. Cobb; Ferril F. Rose; Hansjörg Rindt; Jacqueline J. Glascock; Monir Shababi; Madeline R. Miller; Erkan Y. Osman; Pei-Fen Yen; Michael L. Garcia; Brittanie R. Martin; Mary J. Wetz; Chiara Mazzasette; Zhihua Feng; Chien-Ping Ko; Christian L. Lorson

Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). SMA patients retain at least one SMN2 copy, making it an important target for therapeutics. Many of the existing SMA models are very severe, with animals typically living less than 2 weeks. Here, we present a novel intermediate mouse model of SMA based upon the human genomic SMN2 gene. Genetically, this model is similar to the well-characterized SMNΔ7 model; however, we have manipulated the SMNΔ7 transgene to encode a modestly more functional protein referred to as SMN read-through (SMN(RT)). By introducing the SMN(RT) transgene onto the background of a severe mouse model of SMA (SMN2(+/+);Smn(-/-)), disease severity was significantly decreased based upon a battery of phenotypic parameters, including MN pathology and a significant extension in survival. Importantly, there is not a full phenotypic correction, allowing for the examination of a broad range of therapeutics, including SMN2-dependent and SMN-independent pathways. This novel animal model serves as an important biological and therapeutic model for less severe forms of SMA and provides an in vivo validation of the SMN(RT) protein.


Journal of Molecular Neuroscience | 2012

Optimization of SMN Trans-Splicing Through the Analysis of SMN Introns

Monir Shababi; Christian L. Lorson

Spinal muscular atrophy (SMA), a neurodegenerative disease, is the leading genetic cause of infantile death and is caused by the loss of survival motor neuron 1 (SMN1). Humans carry a duplicated copy gene, SMN2, which produces very low levels of functional protein due to an alternative splicing event. This splicing difference is the reason that SMN2 cannot prevent SMA development when SMN1 is deleted. SMN2 generates a transcript lacking exon 7 and consequently gives rise to an unstable truncated SMN protein that cannot protect from SMA. To increase full-length SMN protein, we utilize a strategy referred to as trans-splicing. This strategy relies upon pre-mRNA splicing occurring between two separate molecules: (1) the endogenous target RNA and (2) the therapeutic RNA that provides the correct RNA sequence via a trans-splicing event. The initial trans-splicing RNA targeted intron 6 and replaced exon 7 with the SMN1 exon 7 in SMN2 pre-mRNA. To determine the most efficient intron for SMN trans-splicing event, a panel of trans-splicing RNA molecules was constructed. Each trans-splicing RNA molecule targets a specific intron within the SMN2 pre-mRNA and based on the target intron, replaces the downstream exons including exon 7. These constructs were examined by RT-PCR, immunofluorescence, and Western blotting. We have identified intron 3 as the most efficient intron to support trans-splicing in cellular assays. The intron 3 trans-splicing construct targets intron 3 and replaces exons 4–7 and was distinguished based on its ability to produce the highest level of the trans-spliced RNA and full-length SMN protein in SMA patient fibroblasts. The efficiency of the intron 3 construct was further improved by addition of an antisense that blocks the 3′ splice site at the intron 4/exon 5 junction. Most importantly, intracerebroventricular injection of the Int3 construct into SMNΔ7 mice elevated the SMN protein levels in the central nervous system. This research demonstrates an alternative platform to correct genetic defects, including SMN expression and examines the molecular basis for trans-splicing.

Collaboration


Dive into the Monir Shababi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chien-Ping Ko

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge