Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monty A. Hampton is active.

Publication


Featured researches published by Monty A. Hampton.


Journal of Sedimentary Research | 1972

The role of subaqueous debris flow in generating turbidity currents

Monty A. Hampton

ABSTRACT Turbidity currents may be generated in the oceans as part of the sequence from landsliding through debris flow to turbidity current flow. Three aspects of this sequence examined here are 1) the transition from landsliding to debris flow, 2) the mechanics of subaqueous debris flow, and 3) the transition from subaqueous debris flow to turbidity-current flow. The transition from landsliding to debris flow, as observed in the subaerial environment, occurs readily if water is incorporated into the landslide debris as it is jostled and remoulded during downslope movement. Remoulding and incorporation of water reduce the strength and increase the fluid behavior of the debris, thereby causing it to flow rather than slide. Incorporation of only a few percent water typically decreases the strength of landslide debris by a factor of two or more; therefore, landslide debris commonly becomes very fluid with incorporation of a small amount of water. The ready availability of water in the marine environment suggests that conditions are favorable for the development of subaqueous debris flows from subaqueous landslides. Debris flow has been modeled as flow of a plastico-viscous substance, which has a yield strength and deforms viscously at stresses greater than the yield strength. The conditions required for movement of a subaqueous debris flow are described in terms of a critical thickness of debris, which varies directly with strength and inversely with submerged trait weight and slope angle. Within a debris flow, viscous shear occurs where shear stress exceeds the shear strength of the debris, but where shear stress is less than shear strength the material is rafted along as a nondeforming plug. Distinct zones of viscous shear and nondeformation exist in a subaqueous debris flow. Transition from subaqueous debris flow to turbidity-current flow involves extensive dilution of debris-flow material, reducing the density from about 2.0 gm/cm3 to about 1.1 gm/cm3. In experiments, subaqueous debris-flow material was mixed with the surrounding water by erosion of material from the front of the flow and ejection of the material into the overlying water to form a dilute turbulent cloud (turbidity current). The amount of mixing, and hence the size of the turbidity current, varied inversely with the strength of the debris. Conditions that cause mixing at the front of a subaqueous debris flow are illustrated by analyzing flow around a half-body, with boundary-layer separation. Turbidity, currents also may be generated from subaqueous debris flows by mixing water directly into the body of the flow, behind the front, although this type of mixing was not observed in experiments. Mixing into the body of the flow can result from flow instability, either by breaking interface waves or by momentum transfer associated with turbulence, but available information suggests that mixing due to instability is inhibited by the presence of clay and coarse granular solids in debris. Mixing by erosion from the front of a debris flow is favored as being a more typical process of generating turbidity currents because this mixing is a natural consequence of debris flowing through water; it requires no special conditions to operate.


Journal of Sedimentary Research | 1975

Competence of Fine-grained Debris Flows

Monty A. Hampton

ABSTRACT Debris flow is the gravity-propelled movement of sediment-water mixtures, in which grains are supported above the non-moving bed by the strength and buoyancy of a clay-water matrix. The competence (largest supported grain size) of a debris flow is thereby determined by the magnitudes of matrix strength and density, which vary primarily and directly with matrix clay content. Strength also varies with the type of clay mineral and with the cation content of the water. Experiments reported here indicate that as little as 1.5 to 4 wt. % clay mixed into water is sufficient to support finest sand. The experiments also show that competence is less in flowing debris than in static debris, and that competence decreases with flow duration for durations less than about one hour but remains essent ally constant for durations greater than one hour. Competence apparently is independent of flow velocity or velocity gradient, although low velocities and gradients were not examined here. Calculations based on the experimental data reveal that marine sediments with finest sand as their coarsest material and with bulk clay contents as low as 2 wt. %, or less, can move as debris flows. Sediments with coarsest sand can move as debris flows if they contain as little as 19% clay, or less. Considering that these values are high estimates, many finegrained marine sediments have clay contents great enough in order to move as debris flows. Zones of various competences should exist within a debris flow because of the nature of the velocity profile and the dependence of competence on shear and flow duration. These zones are preserved during deposition and therefore, debris-flow deposits expectably should have layers of various grain sizes, and perhaps be normally and/or inversely graded. Debris flow is discussed in this paper as an idealized concept, where grain support is wholly by strength and buoyancy. In real flows, support also may be provided by graininteraction dispersive pressure and by turbulence, increasing the competence of the flows. Debris-flow mobility, in terms of the forces required to keep the flow moving, was not considered here but is equally significant to competence in evaluating the occurrence of real debris flows.


Geology | 1986

Structure of a growing accretionary prism, Hikurangi margin, New Zealand

Fred Davey; Monty A. Hampton; J. Childs; Michael A. Fisher; K. Lewis; Jarg R. Pettinga

The Hikurangi margin of eastern North Island, New Zealand, represents the feather edge of the Indian plate at its convergent boundary with the subducting Pacific plate. A migrated seismic reflection profile across this margin clearly displays the structural evolution of an accretionary prism. A 25-km-wide band of “protothrusts” is delineated between the toe of the slope and a converging seamount; this illustrates an early stage in the seaward propagation of a deformation front. Landward-tilted trench-slope basins are separated by ridges that have clearly defined thrusts, which appear to sole out at a decollement. The decollement continues at an angle of only 3° beneath the 150-km-wide margin to a depth of 14 km near the coast where it coincides with an onshore zone of high seismicity.


Journal of Sedimentary Research | 1979

Buoyancy in Debris Flows

Monty A. Hampton

ABSTRACT Coarse granular solids in debris flows are supported within a clay-water matrix by strength and buoyancy. The magnitude of buoyancy is determined in part by the density contrast between coarse grains and matrix, but also by the pore-pressure increase associated with transfer of the weight of coarse grains as they are supported by matrix strength. Buoyancy therefore increases with concentration of coarse grains and can greatly increase the competence of the flow. Mobility of debris flows probably is also enhanced by increased buoyancy, due to reduction of internal friction. Therefore, large buoyancy forces, due to heavy loading of the matrix by coarse solids, may be significant in producing the high competence and mobility exhibited by many natural flows.


Environmental & Engineering Geoscience | 2002

Gravitational failure of sea cliffs in weakly lithified sediment

Monty A. Hampton

Gravitational failure of sea cliffs eroded into weakly lithified sediment at several sites in California involves episodic stress-release fracturing and cantilevered block falls. The principal variables that influence the gravitational stability are tensional stresses generated during the release of horizontal confining stress and weakening of the sediment with increased saturation levels. Individual failures typically comprise less than a cubic meter of sediment, but large areas of a cliff face can be affected by sustained instability over a period of several days. Typically, only the outer meter or so of sediment is removed during a failure episode. In-place sediment saturation levels vary over time and space, generally being higher during the rainy season but moderate to high year-round. Laboratory direct-shear tests show that sediment cohesion decreases abruptly with increasing saturation level; the decrease is similar for all tested sediment if the cohesion is normalized by the maximum, dry-sediment cohesion. Large failures that extend over most or all of the height of the sea cliff are uncommon, but a few large wedge-shaped failures sometimes occur, as does separation of large blocks at sea cliff–gully intersections.


Marine Geology | 1990

Geotechnical characteristics and slope stability on the Ebro margin, western Mediterranean

J. Baraza; Homa J. Lee; Robert E. Kayen; Monty A. Hampton

Abstract Sedimentological and geotechnical analyses of core samples from the Ebro continental slope define two distinct areas on the basis of sediment type, physical properties and geotechnical behavior. The first area is the upper slope area (water depths of 200–500 m), which consists of upper Pleistocene prodeltaic silty clay with a low water content (34% dry weight average), low plasticity, and high overconsolidation near the seafloor. The second area, the middle and lower slope (water depths greater than 500 m), contains clay- and silt-size hemipelagic deposits with a high water content (90% average), high plasticity, and a low to moderate degree of overconsolidation near the sediment surface. Results from geotechnical tests show that the upper slope has a relatively high degree of stability under relatively rapid (undrained) static loading conditions, compared with the middle and lower slopes, which have a higher degree of stability under long-term (drained) static loading conditions. Under cyclic loading, which occurs during earthquakes, the upper slope has a higher degree of stability than the middle and lower slopes. For the surface of the seafloor, calculated critical earthquake accelerations that can trigger slope failures range from 0.73 g on the upper slope to 0.23 g on the lower slope. Sediment buried well below the seafloor may have a critical acceleration as low as 0.09 g on the upper slope and 0.17 g on the lower slope. Seismically induced instability of most of the Ebro slope seems unlikely given that an earthquake shaking of at least intensity VI would be needed, and such strong intensities have never been recorded in the last 70 years. Other cyclic loading events, such as storms or internal waves, do not appear to be direct causes of instability at present. Infrequent, particularly strong earthquakes could cause landslides on the Ebro margin slope. The Columbretes slide on the southwestern Ebro margin may have been caused by intense earthquake shaking associated with volcanic emplacement of the Columbretes Islands. Localized sediment slides on steep canyon and levee slopes could have been caused by less intense shaking. In general, the slope is stable under present environmental loading conditions and is fundamentally constructional. Nevertheless, rapid progradation caused by high sedimentation rates and other processes acting during low sea-level periods, such as more intense wave loading near the shelfbreak, may have caused major instability in the past.


Marine Georesources & Geotechnology | 1977

Sand waves and other bedforms in lower Cook Inlet, Alaska

Arnold H. Bouma; Monty A. Hampton; Robert C. Orlando

Abstract Lower Cook Inlet in Alaska has high‐ tidal currents that average 3–4 knots and normally reach a peak of 6–8 knots. The bottom has an average depth of about 60–70 m in the central part of the inlet that deepens toward the south. Several types of bedforms, such as sand waves, dunes, ripples, sand ribbons, and lag deposits form a microtopography on the otherwise smooth seafloor. Each bedform type covers a small field, normally a few hundred to a few thousand meters wide, and usually several kilometers long parallel to the tidal flow. High‐resolution seismic systems, side‐scan sonar and bottom television were used to study these bedforms. Large sand waves with wavelengths over 300 m and wave heights up to 10 m were observed. Fields of ebb‐oriented or flood‐oriented asymmetric bedforms commonly grade into more symmetric shapes. Several orders of smaller sand waves and dunes cover the flanks of the very large bedforms. The crest directions of both size groups are normally parallel, but deviations of up...


Sedimentary Geology | 1979

Clay mineralogy, fine-grained sediment dispersal, and inferred current patterns, lower Cook Inlet and Kodiak shelf, Alaska

James R. Hein; Arnold H. Bouma; Monty A. Hampton; C. Robin Ross

Abstract Because lower Cook Inlet and Kodiak shelf are being explored and developed for their petroleum resources, it is essential for environmental reasons to understand the sediment dispersal routes and current patterns. The Susitna River flows into upper Cook Inlet and is the source of clay minerals in Holocene deposits found in western lower Cook Inlet. The Copper River, in the northern Gulf of Alaska, provides clay minerals to the Kodiak shelf and southeastern lower Cook Inlet. In addition, crosion of local bedrock outcrops on the shelf produces some clays that are deposited on the Kodiak shelf. Current patterns can be inferred from the clay-mineral distribution pattern. This is true even if the clay-size fraction is a minor sediment component, and in areas where coarse-grained relict deposits occur. Some potential dangers from offshore petroleum development include: (1) rapid and complete mixing of Cook Inlet waters, (2) adsorption of pollutants by clay deposited in quiet bays, and (3) ion-exchange and adsorption of chemical pollutants on clays that are part of the suspended sediment load in lower Cook Inlet.


Sedimentary Geology | 1980

Identification of bedforms in lower cook inlet, Alaska

Arnold H. Bouma; Melvyn L. Rappeport; Robert C. Orlando; Monty A. Hampton

Abstract The seafloor of the central part of lower Cook Inlet, Alaska, is characterized by the presence of different sizes and types of bedforms. The bedforms in the sandy sediments include straight-crested to sinuous to lunate ripples, small, medium, and large sand waves, sand ridges, sand ribbons, and sand patches. In addition, rocky and pebbly seafloor has been identified. The water depth ranges from 25 to 120 m, and surface currents average 3.8 kt (2 m/s). Bottom currents have been measured at as much as 42 cm/s at 1 m above bottom. Underwater television observations have shown that the rate of sand transport is lower than expected because small amounts of clay and organic matter appear to inhibit remobilization. Only during the last 1 to 2 h of ebb and flood stages of spring tides, and during storms, does significant transport occur. Comparison of data from high-resolution seismic profiling systems, side-scan sonar, bottom television and camera, and bottom sampling shows that bottom and bedform interpretations based solely on sonographs can be in error. Measuring the length of ‘acoustic shadows’ on sonographs to obtain bedform heights gives dimensions that are too large by factors of 3–7. Bottom television investigations revealed that the troughs between small sand waves are flat and carpeted by shell fragments. Such coarse material has a high acoustic reflectance that is not related to slope or height and can lead to false interpretations on bedform dimensions. Our observations have shown that small sand waves commonly superimposed on larger ones are slightly higher than those present on flat hard bottom but are still less than calculated from acoustic shadows. Where the bottom is rather smooth or contains elevations small enough to be masked by bathymetric ‘noise’ caused by the pitching of the vessel, sonographs typically show either small sand waves, sand ribbons, sand patches, rocks, or smooth bottom. The smooth-bottom category can vary widely from ripples to gravelly or shelly or to small rocks with biological overgrowth as verified by television observations. Our observations have clearly demonstrated the need for an integrated multi-scale observation and sampling program in order to classify the bottom characteristics and to provide quantitative data for transport calculations.


Marine Georesources & Geotechnology | 1977

Slope instability near the shelf break, Western Gulf of Alaska*

Monty A. Hampton; Arnold H. Bouma

Abstract The uppermost continental slope in the western Gulf of Alaska, from southern Albatross Bank to Portlock Bank, includes two broad areas where large submarine landslides occur and one intervening area where they are absent. In the areas containing large slides, seismic reflection records show evidence for active nearsurface folding and consequent slope steepening, which is apparently the ultimate control on this sliding. Evidence is lacking for similar active steepening in the area containing no large slides, where slope gradients are relatively gentle. Relatively small, shallow slides, fundamentally different from the larger ones, occur in all three areas on slopes that are not necessarily actively steepening. These slides are probably stratigraphically controlled, with failure occurring along weak subsurface strata. Strong earthquakes and the related accelerations are probably responsible for the actual triggering of many of the large and small slides. As long as the tectonic setting remains as i...

Collaboration


Dive into the Monty A. Hampton's collaboration.

Top Co-Authors

Avatar

Arnold H. Bouma

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Herman A. Karl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael E. Field

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brian D. Edwards

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David E. Drake

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James V. Gardner

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Robert E. Kayen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Douglas G. Masson

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar

David A. Cacchione

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Murray

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge