Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morgane Michaud is active.

Publication


Featured researches published by Morgane Michaud.


Biochimica et Biophysica Acta | 2014

Glycerolipids in photosynthesis: Composition, synthesis and trafficking☆

Laurence Boudière; Morgane Michaud; Dimitris Petroutsos; Fabrice Rébeillé; Denis Falconet; Olivier Bastien; Sylvaine Roy; Giovanni Finazzi; Norbert Rolland; Juliette Jouhet; Maryse A. Block; Eric Maréchal

Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.


Plant Molecular Biology | 2012

Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria

Nadia Robert; Isabelle d’Erfurth; Anne Marmagne; Mathieu Erhardt; Michèle Allot; Karine Boivin; Lionel Gissot; Dario Monachello; Morgane Michaud; Anne-Marie Duchêne; Hélène Barbier-Brygoo; Laurence Maréchal-Drouard; Geneviève Ephritikhine; Sophie Filleur

In mammals, the Voltage-dependent anion channels (VDACs) are predominant proteins of the outer mitochondrial membrane (OMM) where they contribute to the exchange of small metabolites essential for respiration. They were shown to be as well associated with the plasma membrane (PM) and act as redox enzyme or are involved in ATP release for example. In Arabidopsis, we show that four out of six genomic sequences encode AtVDAC proteins. All four AtVDACs are ubiquitously expressed in the plant but each of them displays a specific expression pattern in root cell types. Using two complementary approaches, we demonstrate conclusively that the four expressed AtVDACs are targeted to both mitochondria and plasma membrane but in differential abundance, AtVDAC3 being the most abundant in PM, and conversely, AtVDAC4 almost exclusively associated with mitochondria. These are the first plant proteins to be shown to reside in both these two membranes. To investigate a putative function of AtVDACs, we analyzed T-DNA insertion lines in each of the corresponding genes. Knock-out mutants for AtVDAC1, AtVDAC2 and AtVDAC4 present slow growth, reduced fertility and yellow spots in leaves when atvdac3 does not show any visible difference compared to wild-type plants. Analyses of atvdac1 and atvdac4 reveal that yellow areas correspond to necrosis and the mitochondria are swollen in these two mutants. All these results suggest that, in spite of a localization in plasma membrane for three of them, AtVDAC1, AtVDAC2 and AtVDAC4 have a main function in mitochondria.


Plant Journal | 2011

A global picture of tRNA genes in plant genomes

Morgane Michaud; Valérie Cognat; Anne-Marie Duchêne; Laurence Maréchal-Drouard

Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.


Nucleic Acids Research | 2013

PlantRNA, a database for tRNAs of photosynthetic eukaryotes

Valérie Cognat; Gaël Pawlak; Anne-Marie Duchêne; Magali Daujat; Anaïs Gigant; Thalia Salinas; Morgane Michaud; Bernard Gutmann; Philippe Giegé; Anthony Gobert; Laurence Maréchal-Drouard

PlantRNA database (http://plantrna.ibmp.cnrs.fr/) compiles transfer RNA (tRNA) gene sequences retrieved from fully annotated plant nuclear, plastidial and mitochondrial genomes. The set of annotated tRNA gene sequences has been manually curated for maximum quality and confidence. The novelty of this database resides in the inclusion of biological information relevant to the function of all the tRNAs entered in the library. This includes 5′- and 3′-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences, aminoacyl-tRNA synthetases and enzymes responsible for tRNA maturation and modification. Finally, data on mitochondrial import of nuclear-encoded tRNAs as well as the bibliome for the respective tRNAs and tRNA-binding proteins are also included. The current annotation concerns complete genomes from 11 organisms: five flowering plants (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Medicago truncatula and Brachypodium distachyon), a moss (Physcomitrella patens), two green algae (Chlamydomonas reinhardtii and Ostreococcus tauri), one glaucophyte (Cyanophora paradoxa), one brown alga (Ectocarpus siliculosus) and a pennate diatom (Phaeodactylum tricornutum). The database will be regularly updated and implemented with new plant genome annotations so as to provide extensive information on tRNA biology to the research community.


Current Biology | 2016

AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex

Morgane Michaud; Valérie Gros; Marianne Tardif; Sabine Brugière; Myriam Ferro; William A. Prinz; Alexandre Toulmay; Jaideep Mathur; Michael R. Wozny; Denis Falconet; Eric Maréchal; Maryse A. Block; Juliette Jouhet

The mitochondrion is an organelle originating from an endosymbiotic event and playing a role in several fundamental processes such as energy production, metabolite syntheses, and programmed cell death. This organelle is delineated by two membranes whose synthesis requires an extensive exchange of phospholipids with other cellular organelles such as endoplasmic reticulum (ER) and vacuolar membranes in yeast. These transfers of phospholipids are thought to occur by a non-vesicular pathway at contact sites between two closely apposed membranes. In plants, little is known about the biogenesis of mitochondrial membranes. Contact sites between ER and mitochondria are suspected to play a similar role in phospholipid trafficking as in yeast, but this has never been demonstrated. In contrast, it has been shown that plastids are able to transfer lipids to mitochondria during phosphate starvation. However, the proteins involved in such transfer are still unknown. Here, we identified in Arabidopsis thaliana a large lipid-enriched complex called the mitochondrial transmembrane lipoprotein (MTL) complex. The MTL complex contains proteins located in the two mitochondrial membranes and conserved in all eukaryotic cells, such as the TOM complex and AtMic60, a component of the MICOS complex. We demonstrate that AtMic60 contributes to the export of phosphatidylethanolamine from mitochondria and the import of galactoglycerolipids from plastids during phosphate starvation. Furthermore, AtMic60 promotes lipid desorption from membranes, likely as an initial step for lipid transfer, and binds to Tom40, suggesting that AtMic60 could regulate the tethering between the inner and outer membranes of mitochondria.


Plant Molecular Biology | 2010

RNA trafficking in plant cells: targeting of cytosolic mRNAs to the mitochondrial surface

Morgane Michaud; Laurence Maréchal-Drouard; Anne-Marie Duchêne

Subcellular localization of mRNA is a widespread and efficient way for targeting proteins to specific regions of a cell. Messenger RNA sorting appears as a key mechanism for posttranscriptional gene regulation, and its involvement in organelle biogenesis has been described in different organisms. Here we demonstrate that mRNA targeting to the surface of mitochondria occurs in higher plants. Cytosolic mRNAs corresponding to mitochondrial proteins, but also to some particular cytosolic proteins, were found associated to mitochondria, offering new perspectives for mitochondria biogenesis in plant cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology

Morgane Michaud; Elodie Ubrig; Sophie Filleur; Mathieu Erhardt; Geneviève Ephritikhine; Laurence Maréchal-Drouard; Anne-Marie Duchêne

Significance Eukaryotic cells have developed a variety of mechanisms to sort proteins into distinct intracellular compartments, using protein signals and potentially mRNA localization. Most mitochondrial proteins are nucleus-encoded and imported into mitochondria. The amino acid signals and receptors involved in import are now well characterized. However, a new model is emerging, involving mRNA targeting in mitochondrial protein import. In this work, we show that two mRNA isoforms encoding a mitochondrial porin are differentially targeted to the mitochondrial surface. The mRNA sorting signal has been identified and can be used as a tool to target a reporter RNA to mitochondria. Moreover, the differential mRNA targeting impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis. Intracellular targeting of mRNAs has recently emerged as a prevalent mechanism to control protein localization. For mitochondria, a cotranslational model of protein import is now proposed in parallel to the conventional posttranslational model, and mitochondrial targeting of mRNAs has been demonstrated in various organisms. Voltage-dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane and the major transport pathway for numerous metabolites. Four nucleus-encoded VDACs have been identified in Arabidopsis thaliana. Alternative cleavage and polyadenylation generate two VDAC3 mRNA isoforms differing by their 3′ UTR. By using quantitative RT-PCR and in vivo mRNA visualization approaches, the two mRNA variants were shown differentially associated with mitochondria. The longest mRNA presents a 3′ extension named alternative UTR (aUTR) that is necessary and sufficient to target VDAC3 mRNA to the mitochondrial surface. Moreover, aUTR is sufficient for the mitochondrial targeting of a reporter transcript, and can be used as a tool to target an unrelated mRNA to the mitochondrial surface. Finally, VDAC3–aUTR mRNA variant impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis.


Plant Physiology | 2016

ALA10, a Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine in the ER and Affects Chloroplast Lipid Composition in Arabidopsis thaliana

César Botella; Emeline Sautron; Laurence Boudière; Morgane Michaud; Emmanuelle Dubots; Yoshiki Yamaryo-Botté; Catherine Albrieux; Eric Maréchal; Maryse A. Block; Juliette Jouhet

The ALA10 phospholipid flippase reduces phosphatidylcholine desaturation and stimulates galactolipid-tophosphatidylcholine ratio in photosynthetic tissues. The biogenesis of photosynthetic membranes relies on galactoglycerolipids, which are synthesized via pathways that are dispatched over several cell compartments. This membrane biogenesis requires both trafficking of lipid intermediates and a tight homeostatic regulation. In this work, we address the role of ALA10 (for aminophospholipid ATPase), a P4-type ATPase, in a process counteracting the monogalactosyldiacylglycerol (MGDG) shortage in Arabidopsis (Arabidopsis thaliana) leaves. ALA10 can interact with protein partners, ALIS1 (for ALA-interacting subunit1) or ALIS5, leading to differential endomembrane localizations of the interacting proteins, close to the plasma membrane with ALIS1 or to chloroplasts with ALIS5. ALA10 interacts also with FATTY ACID DESATURASE2 (FAD2), and modification of ALA10 expression affects phosphatidylcholine (PC) fatty acyl desaturation by disturbing the balance between FAD2 and FAD3 activities. Modulation of ALA10 expression downstream impacts the fatty acyl composition of chloroplast PC. ALA10 expression also enhances leaf growth and improves the MGDG-PC ratio, possibly through MGDG SYNTHASE1 (MGD1) activation by phosphatidic acid. The positive effect of ALA10 on leaf development is significant in conditions such as upon treatment of plants with Galvestine-1, an inhibitor of MGDG synthases, or when plants are grown at chilling temperature.


Scientific Reports | 2015

Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures

Coline Meï; Morgane Michaud; Mathilde Cussac; Catherine Albrieux; Valérie Gros; Eric Maréchal; Maryse A. Block; Juliette Jouhet; Fabrice Rébeillé

In higher plants, fatty acids (FAs) with 18 carbons (18C) represent about 70% of total FAs, the most abundant species being 18:2 and 18:3. These two polyunsaturated FAs (PUFAs) represent about 55% of total FAs in Arabidopsis cell suspension cultures, whereas 18:1 represents about 10%. The level of PUFAs may vary, depending on ill-defined factors. Here, we compared various sets of plant cell cultures and noticed a correlation between the growth rate of a cell population and the level of unsaturation of 18C FAs. These observations suggest that the final level of PUFAs might depend in part on the rate of cell division, and that FAD2 and FAD3 desaturases, which are respectively responsible for the formation of 18:2 and 18:3 on phospholipids, have limiting activities in fast-growing cultures. In plant cell culture, phosphate (Pi) deprivation is known to impair cell division and to trigger lipid remodeling. We observed that Pi starvation had no effect on the expression of FAD genes, and that the level of PUFAs in this situation was also correlated with the growth rate. Thus, the level of PUFAs appears as a hallmark in determining cell maturity and aging.


FEBS Journal | 2017

Glycerolipid synthesis and lipid trafficking in plant mitochondria

Morgane Michaud; William A. Prinz; Juliette Jouhet

Lipid trafficking between mitochondria and other organelles is required for mitochondrial membrane biogenesis and signaling. This lipid exchange occurs by poorly understood nonvesicular mechanisms. In yeast and mammalian cells, this lipid exchange is thought to take place at contact sites between mitochondria and the ER or vacuolar membranes. Some proteins involved in the tethering between membranes or in the transfer of lipids in mitochondria have been identified. However, in plants, little is known about the synthesis of mitochondrial membranes. Mitochondrial membrane biogenesis is particularly important and noteworthy in plants as the lipid composition of mitochondrial membranes is dramatically changed during phosphate starvation and other stresses. This review focuses on the principal pathways involved in the synthesis of the most abundant mitochondrial glycerolipids in plants and the lipid trafficking that is required for plant mitochondria membrane biogenesis.

Collaboration


Dive into the Morgane Michaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliette Jouhet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Maréchal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Maryse A. Block

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Albrieux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denis Falconet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Geneviève Ephritikhine

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laurence Boudière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sophie Filleur

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge