Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moritz Winterhoff is active.

Publication


Featured researches published by Moritz Winterhoff.


Current Biology | 2012

FMNL2 Drives Actin-Based Protrusion and Migration Downstream of Cdc42

Jennifer Block; Dennis Breitsprecher; Sonja Kühn; Moritz Winterhoff; Frieda Kage; Robert Geffers; Patrick Duwe; Jennifer Rohn; Buzz Baum; Cord Brakebusch; Matthias Geyer; Theresia E. B. Stradal; Jan Faix; Klemens Rottner

Summary Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE [1]. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex [2]. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2 [3], accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia.


The EMBO Journal | 2013

CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP

Andrea Disanza; Sara Bisi; Moritz Winterhoff; Francesca Milanesi; Dmitry S. Ushakov; David J. Kast; Paola Marighetti; Guillaume Romet-Lemonne; Hans-Michael Müller; Walter Nickel; Joern Linkner; Davy Waterschoot; Christophe Ampe; Salvatore Cortellino; Andrea Palamidessi; Roberto Dominguez; Marie-France Carlier; Jan Faix; Giorgio Scita

Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high‐density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53‐dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.


Molecular Biology of the Cell | 2013

Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin.

Stefan A. Koestler; Anika Steffen; Maria Nemethova; Moritz Winterhoff; Ningning Luo; J. Margit Holleboom; Jessica Krupp; Sonja Jacob; Marlene Vinzenz; Florian K. M. Schur; Kai Schlüter; Peter Gunning; Christoph Winkler; Christian Schmeiser; Jan Faix; Theresia E. B. Stradal; J. Victor Small; Klemens Rottner

Acute suppression of Arp2/3 complex activity in lamellipodia demonstrates its essential role in actin network treadmilling and filament organization and geometry. Arp2/3 complex activity also defines the recruitment of crucial independent factors, including capping protein and cofilin, and is essential for lamellipodia-based keratocyte migration.


Journal of Cell Science | 2013

The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization.

Shuling Yan; Zhiyi Lv; Moritz Winterhoff; Christian Wenzl; Thomas Zobel; Jan Faix; Sven Bogdan; Jörg Grosshans

Summary During Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown. We found that the formin Diaphanous (Dia) is required for establishing and maintaining distinct lateral and basal domains during cellularization. In dia mutant embryos lateral marker proteins, such as Discs-large and Armadillo/&bgr;-Catenin spread into the basal compartment. Furthermore, high-resolution and live-imaging analysis of dia mutant embryos revealed an increased number of membrane extensions and endocytic activity at the basal domain, indicating a suppressing function of dia on membrane invaginations. Dia function might be based on an antagonistic interaction with the F-BAR protein Cip4/Toca-1, a known activator of the WASP/WAVE-Arp2/3 pathway. Dia and Cip4 physically and functionally interact and overexpression of Cip4 phenocopies dia loss-of-function. In vitro, Cip4 inhibits mainly actin nucleation by Dia. Thus, our data support a model in which linear actin filaments induced by Dia stabilize cortical compartmentalization by antagonizing membrane turnover induced by WASP/WAVE-Arp2/3.


Nature Communications | 2017

FMNL formins boost lamellipodial force generation

Frieda Kage; Moritz Winterhoff; Vanessa Dimchev; Jan Mueller; Tobias Thalheim; Anika Freise; Stefan Brühmann; Jana Kollasser; Jennifer Block; Georgi Dimchev; Matthias Geyer; Hans-Joachim Schnittler; Cord Brakebusch; Theresia E. B. Stradal; Marie-France Carlier; Michael Sixt; Josef A. Käs; Jan Faix; Klemens Rottner

Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.


Naunyn-schmiedebergs Archives of Pharmacology | 2014

cCMP is a substrate for MRP5

Svenja Laue; Moritz Winterhoff; Jeroen J. M. W. van den Heuvel; Frans G. M. Russel; Roland Seifert

The cyclic pyrimidine nucleotide cCMP has been suggested to serve as second messenger. However, phosphodiesterases studied so far do not hydrolyze cCMP. Therefore, we searched for alternative cCMP inactivation mechanisms. cCMP is a substrate for multidrug resistance protein 5, indicating that export from the cytosol into the extracellular space is an important inactivation mechanism for cCMP.


Nature Communications | 2015

A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement.

Nagendran Ramalingam; Christof Franke; Evelin Jaschinski; Moritz Winterhoff; Yao Lu; Stefan Brühmann; Alexander Junemann; Helena Meier; Angelika A. Noegel; Igor Weber; Hongxia Zhao; Rudolf Merkel; Michael Schleicher; Jan Faix

Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.


Journal of Biological Chemistry | 2013

The Switch-associated Protein 70 (SWAP-70) Bundles Actin Filaments and Contributes to the Regulation of F-actin Dynamics

Carlos Andrés Chacón-Martínez; Nadine Kiessling; Moritz Winterhoff; Jan Faix; Thomas Müller-Reichert; Rolf Jessberger

Background: Precise spatiotemporal rearrangement of the actin cytoskeleton is essential for cell migration and adhesion. Results: SWAP-70 bundles actin filaments and interacts with cofilin in vitro and in murine mast cells. Conclusion: SWAP-70 is a parallel and anti-parallel bundling protein that participates in the organization of F-actin networks. Significance: Identification and characterization of a regulator of F-actin dynamics improve our understanding on the spatiotemporal control of cytoskeletal processes. Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis.

Alexander Junemann; Vedrana Filić; Moritz Winterhoff; Benjamin Nordholz; Christof Litschko; Helena Schwellenbach; Till Stephan; Igor Weber; Jan Faix

Significance Macropinocytosis and phagocytosis are two Ras-regulated, highly related processes of great physiological relevance collectively termed large-scale endocytosis. Both are actin-driven and entail engulfment of extracellular material by crown-like protrusions. Aside from the Arp2/3 complex, which serves as the main nucleator of branched actin filaments at the cup rim, the underlying mechanisms of actin assembly still remain elusive. Here, we analyzed the role of Diaphanous-related formin G (ForG) from Dictyostelium by biochemical, genetic, and imaging techniques. Our data demonstrate that this formin exhibits a rather weak nucleation activity and imply that ForG-mediated filament elongation synergizes with the Arp2/3 complex in actin assembly. Finally, we identify ForG as a Ras-regulated formin and show its significance for actin assembly in endocytic structures. Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.


European Journal of Cell Biology | 2012

Highly effective removal of floxed Blasticidin S resistance cassettes from Dictyostelium discoideum mutants by extrachromosomal expression of Cre.

Joern Linkner; Benjamin Nordholz; Alexander Junemann; Moritz Winterhoff; Jan Faix

The inactivation of proteins in cells is inevitable to study their physiological role in various cellular processes. In contrast to strategies to alter the amount of active proteins in cells, only a gene knockout guarantees complete removal of the protein of interest. For Dictyostelium discoideum cells, the gene replacement construct typically consists of a Blasticidin S resistance (Bsr) cassette flanked by fragments of the target gene to allow insertion by homologous recombination. More advanced knockout constructs additionally carry loxP sites on both sides of the Bsr cassettes for subsequent removal of the selection marker by transient expression of Cre recombinase, thus allowing generation of multiple knockouts using just a single selection marker. However, due to its design, the available neomycin selection-based Cre expression plasmid occasionally tends to integrate into the genome and also yield only a moderate number of transfectants in liquid media. In some cases, for instance in SCAR-null cells, it was not possible to remove the Bsr cassette without stable integration of the Cre expression vector into the genome. To circumvent these difficulties we designed the extrachromosomal Cre-recombinase expression vector pTX-NLS-Cre. We verified the greatly improved efficacy of this novel Cre-loxP approach by removal of the Bsr cassette in five different cell lines including the SCAR-null mutant. As a consequence, this vector will be a highly valuable means for the rapid generation of single or multiple mutants remaining sensitive to the most reliable selection markers Blasticidin S and neomycin.

Collaboration


Dive into the Moritz Winterhoff's collaboration.

Top Co-Authors

Avatar

Jan Faix

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klemens Rottner

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frieda Kage

Braunschweig University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge