Morris Ling
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morris Ling.
Journal of Clinical Investigation | 2001
Wen-Fang Cheng; Chien Fu Hung; Chee Yin Chai; Keng-Fu Hsu; Liangmei He; Morris Ling; T. C. Wu
Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.
Journal of Clinical Investigation | 2003
Tae Woo Kim; Chien Fu Hung; Morris Ling; Jeremy Juang; Liangmei He; J. Marie Hardwick; Sharad Kumar; T. C. Wu
Intradermal vaccination by gene gun efficiently delivers DNA vaccines into DCs of the skin, resulting in the activation and priming of antigen-specific T cells in vivo. DCs, however, have a limited life span, hindering their long-term ability to prime antigen-specific T cells. We reason that a strategy that prolongs the survival of DNA-transduced DCs will enhance priming of antigen-specific T cells and DNA vaccine potency. Here we show that codelivery of DNA encoding inhibitors of apoptosis (BCL-xL, BCL-2, XIAP, dominant negative caspase-9, or dominant negative caspase-8) with DNA encoding model antigens prolongs the survival of transduced DCs. More importantly, vaccinated mice exhibited significant enhancement in antigen-specific CD8+ T cell immune responses, resulting in a potent antitumor effect against antigen-expressing tumors. Among these antiapoptotic factors, BCL-xL demonstrated the greatest enhancement in antigen-specific immune responses and antitumor effects. Thus, coadministration of DNA vaccines with DNA encoding antiapoptotic proteins represents an innovative approach to enhance DNA vaccine potency.
Journal of Immunology | 2001
Chien Fu Hung; Wen-Fang Cheng; Chee-Yin Chai; Keng-Fu Hsu; Liangmei He; Morris Ling; T. C. Wu
The potency of naked DNA vaccines is limited by their inability to amplify and spread in vivo. VP22, a HSV-1 protein, has demonstrated the remarkable property of intercellular transport and may thus provide a unique approach for enhancing vaccine potency. Therefore, we created a novel fusion of VP22 with a model Ag, human papillomavirus type 16 E7, in a DNA vaccine that generated enhanced spreading and MHC class I presentation of Ag. These properties led to a dramatic increase in the number of E7-specific CD8+ T cell precursors in vaccinated mice (around 50-fold) and converted a less effective DNA vaccine into one with significant potency against E7-expressing tumors. In comparison, nonspreading VP221–267 mutants failed to enhance vaccine potency. Our data indicated that the potency of DNA vaccines may be dramatically improved through intercellular spreading and enhanced MHC class I presentation of Ag.
Journal of Virology | 2001
Wen-Fang Cheng; Chien Fu Hung; Chee-Yin Chai; Keng-Fu Hsu; Liangmai He; Morris Ling; T. C. Wu
ABSTRACT Recently, self-replicating and self-limiting RNA vaccines (RNA replicons) have emerged as an important form of nucleic acid vaccines. Self-replicating RNA eventually causes lysis of transfected cells and does not raise the concern associated with naked DNA vaccines of integration into the host genome. This is particularly important for development of vaccines targeting proteins that are potentially oncogenic. However, the potency of RNA replicons is significantly limited by their lack of intrinsic ability to spread in vivo. The herpes simplex virus type 1 protein VP22 has demonstrated the remarkable property of intercellular transport and provides the opportunity to enhance RNA replicon vaccine potency. We therefore created a novel fusion of VP22 with a model tumor antigen, human papillomavirus type 16 E7, in a Sindbis virus RNA replicon vector. The linkage of VP22 with E7 resulted in a significant enhancement of E7-specific CD8+ T-cell activities in vaccinated mice and converted a less effective RNA replicon vaccine into one with significant potency against E7-expressing tumors. These results indicate that fusion of VP22 to an antigen gene may greatly enhance the potency of RNA replicon vaccines.
Journal of Immunology | 2001
Wen-Fang Cheng; Chien Fu Hung; Chee Yin Chai; Keng Fu Hsu; Liangmai He; Charles M. Rice; Morris Ling; T. C. Wu
Recently, self-replicating RNA vaccines (RNA replicons) have emerged as an effective strategy for nucleic acid vaccine development. Unlike naked DNA vaccines, RNA replicons eventually cause lysis of transfected cells and therefore do not raise the concern of integration into the host genome. We evaluated the effect of linking human papillomavirus type 16 E7 as a model Ag to Mycobacterium tuberculosis heat shock protein 70 (HSP70) on the potency of Ag-specific immunity generated by a Sindbis virus self-replicating RNA vector, SINrep5. Our results indicated that this RNA replicon vaccine containing an E7/HSP70 fusion gene generated significantly higher E7-specific T cell-mediated immune responses in vaccinated mice than did vaccines containing the wild-type E7 gene. Furthermore, our in vitro studies demonstrated that E7 Ag from E7/HSP70 RNA replicon-transfected cells can be processed by bone marrow-derived dendritic cells and presented more efficiently through the MHC class I pathway than can wild-type E7 RNA replicon-transfected cells. More importantly, the fusion of HSP70 to E7 converted a less effective vaccine into one with significant potency against E7-expressing tumors. This antitumor effect was dependent on NK cells and CD8+ T cells. These results indicated that fusion of HSP70 to an Ag gene may greatly enhance the potency of self-replicating RNA vaccines.
Human Gene Therapy | 2002
Wen-Fang Cheng; Chien Fu Hung; Keng-Fu Hsu; Chee Yin Chai; Liangmei He; John M. Polo; Leigh A. Slater; Morris Ling; T. C. Wu
Alphavirus vectors have emerged as a strategy for the development of cancer vaccines and gene therapy applications. The availability of a new packaging cell line (PCL), which is capable of generating alphavirus replicon particles without contamination from replication-competent virus, has advanced the field of vaccine development. This replication-defective vaccine vector has potential advantages over naked nucleic acid vaccines, such as increased efficiency of gene delivery and large-scale production. We have developed a new strategy to enhance nucleic acid vaccine potency by linking VP22, a herpes simplex virus type 1 (HSV-1) tegument protein, to a model antigen. This strategy facilitated the spread of linked E7 antigen to neighboring cells. In this study, we created a recombinant Sindbis virus (SIN)-based replicon particle encoding VP22 linked to a model tumor antigen, human papillomavirus type 16 (HPV-16) E7, using a stable SIN PCL. The linkage of VP22 to E7 in these SIN replicon particles resulted in a significant increase in the number of E7-specific CD8(+) T cell precursors and a strong antitumor effect against E7-expressing tumors in vaccinated C57BL/6 mice relative to wild-type E7 SIN replicon particles. Furthermore, a head-to-head comparison of VP22-E7-containing naked DNA, naked RNA replicons, or RNA replicon particle vaccines indicated that SINrep5-VP22/E7 replicon particles generated the most potent therapeutic antitumor effect. Our results indicated that the VP22 strategy used in the context of SIN replicon particles may facilitate the generation of a highly effective vaccine for widespread immunization.
Gene Therapy | 2001
Keng Fu Hsu; Chien Fu Hung; Wen-Fang Cheng; Liangmei He; Leigh A. Slater; Morris Ling; T. C. Wu
Naked DNA vaccines represent an attractive approach for generating antigen-specific immunity because of their stability and simplicity of delivery. There are particular concerns with DNA vaccines however, such as potential integration into the host genome, cell transformation, and limited potency. The usage of DNA-based alphaviral RNA replicons (suicidal DNA vectors) may alleviate the concerns of integration or transformation since suicidal DNA vectors eventually cause lysis of transfected cells. To improve further the potency of suicidal DNA vaccines, we evaluated the effect of linking Mycobacterium tuberculosis heat shock protein 70 (Hsp70) to human papillomavirus type 16 (HPV-16) E7 as a model antigen on antigen-specific immunity generated by a DNA-based Semliki Forest virus (SFV) RNA vector, pSCA1. Our results indicated that this suicidal DNA vaccine containing E7/Hsp70 fusion genes generated significantly higher E7-specific T cell-mediated immune responses than vaccines containing the wild-type E7 gene in vaccinated mice. More importantly, this fusion converted a less effective vaccine into one with significant potency against established E7-expressing metastatic tumors. The antitumor effect was predominantly CD8-dependent. These results indicate that linkage of Hsp70 to the antigen may greatly enhance the potency of suicidal DNA vaccines.
Gene Therapy | 2000
Tian Li Wang; Morris Ling; Ie Ming Shih; Pham T; Sara I. Pai; Lu Z; Robert J. Kurman; Drew M. Pardoll; T. C. Wu
Dendritic cells (DCs) are highly efficient antigen-presenting cells capable of priming both cytotoxic and helper T cells in vivo. Recent studies have demonstrated the potential use of DCs that are modified to carry tumor-specific antigens in cancer vaccines. However, the optimal administration route of DC-based vaccines to generate the greatest anti-tumor effect remains to be determined. This study is aimed at comparing the levels of immune responses and anti-tumor effect generated through different administration routes of DC-based vaccination. We chose the E7 gene product of human papillomavirus (HPV) as the model antigen and generated a stable DC line (designated as DC-E7) that constitutively expresses the E7 gene. Among the three different routes of DC-E7 vaccine administration in a murine model, we found that intramuscular administration generated the greatest anti-tumor immunity compared with subcutaneous and intravenous routes of administration. Furthermore, intramuscular administration of DC-E7 elicited the highest levels of E7-specific antibody and greatest numbers of E7-specific CD4+ T helper and CD8+ T cell precursors. Our results indicate that the potency of DC-based vaccines depends on the specific route of administration and that intramuscular administration of E7-transfected DCs generates the most potent E7-specific anti-tumor immunity.
Journal of Virology | 2002
Chien Fu Hung; Liangmei He; Jeremy Juang; Tzyy Jye Lin; Morris Ling; T. C. Wu
ABSTRACT We have previously employed an intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein to enhance DNA vaccine potency because DNA vaccines lack the intrinsic ability to amplify in cells. Recently, studies have demonstrated that the protein encoded by UL49 of Mareks disease virus type 1 (MDV-1) exhibits some degree of homology to the HSV-1 VP22 protein and features the property of intercellular transport. We therefore generated a DNA vaccine encoding MDV-1 VP22 linked to a model antigen, human papillomavirus type 16 E7. We demonstrated that compared with mice vaccinated with DNA encoding wild-type E7, mice vaccinated with MDV-1 VP22/E7 DNA exhibited a significant increase in number of gamma-interferon-secreting, E7-specific CD8+-T-cell precursors as well as stronger tumor prevention and treatment effects. Furthermore, our data indicated that the antitumor effect was CD8 dependent. These results suggested that the development of vaccines encoding VP22 fused to a target antigen might be a promising strategy for improving DNA vaccine potency.
Journal of Experimental Medicine | 2013
Sabina A. Islam; Morris Ling; John Leung; Wayne G. Shreffler; Andrew D. Luster
CCL18 is an endogenous agonist of the human CCR8 receptor.