Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motohide Tamura is active.

Publication


Featured researches published by Motohide Tamura.


New Astronomy | 2010

VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way

D. Minniti; P. W. Lucas; J. P. Emerson; Roberto K. Saito; M. Hempel; P. Pietrukowicz; Av Ahumada; M. V. Alonso; J. Alonso-Garcia; Ji Arias; Reba M. Bandyopadhyay; R.H. Barbá; B. Barbuy; L. R. Bedin; Eduardo Luiz Damiani Bica; J. Borissova; L. Bronfman; Giovanni Carraro; Marcio Catelan; Juan J. Claria; N. J. G. Cross; R. de Grijs; I. Dékány; Janet E. Drew; C. Fariña; C. Feinstein; E. Fernández Lajús; R.C. Gamen; D. Geisler; W. Gieren

Original article can be found at: http://www.sciencedirect.com/science/journal/13841076 Copyright Elsevier B.V.


The Astrophysical Journal | 2009

INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM

Shogo Nishiyama; Motohide Tamura; Hirofumi Hatano; Daisuke Kato; Toshihiko Tanabe; Koji Sugitani; Tetsuya Nagata

We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 μm, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region l 30 and b 10 has been surveyed in the J, H, and KS bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made KS versus KS – λ color-magnitude diagrams (CMDs) where λ=3.6, 4.5, 5.8, and 8.0 μm. The KS magnitudes of bulge red clump stars and the KS – λ colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction for the four IRAC bands. Combined with for the J and H bands derived by Nishiyama et al., we obtain AJ :AH ::A [3.6]:A [4.5]:A [5.8]:A [8.0] = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at λ 3 μm from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and KS bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and KS is well fitted by a power law of steep decrease A λ ∝ λ–2.0 toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios hampers unambiguous determination of the extinction law; however, observational results toward these lines of sight cannot be reconciled with a single extinction law.


The Astrophysical Journal | 2013

Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

Masayuki Kuzuhara; Motohide Tamura; Tomoyuki Kudo; Markus Janson; Ryo Kandori; Timothy D. Brandt; Christian Thalmann; David S. Spiegel; Beth A. Biller; Yasunori Hori; R. Suzuki; Adam Burrows; T. Henning; Edwin L. Turner; M. W. McElwain; Amaya Moro-Martin; Takuya Suenaga; Yasuhiro H. Takahashi; Jungmi Kwon; P. W. Lucas; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; H. Fujiwara; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano

Several exoplanets have recently been imaged at wide separations of >10?AU from their parent stars. These span a limited range of ages ( 0.5?mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160?Myr, GJ 504b has an estimated mass of 4 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5?AU exceeds the typical outer boundary of ~30?AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510 K) and has a bluer color (J ? H = ?0.23?mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.


The Astrophysical Journal | 2006

INTERSTELLAR EXTINCTION LAW IN THE J, H, AND Ks BANDS TOWARD THE GALACTIC CENTER

Shogo Nishiyama; Tetsuya Nagata; Nobuhiko Kusakabe; Noriyuki Matsunaga; Takahiro Naoi; Daisuke Kato; Chie Nagashima; Koji Sugitani; Motohide Tamura; Toshihiko Tanabe; S. Sato

We have determined the ratios of total to selective extinction in the near-infrared bands (J,H,Ks) toward the Galactic center from the observations of the region l 20 and 05 b 10 with the IRSF telescope and the SIRIUS camera. Using the positions of red clump stars in color-magnitude diagrams as a tracer of the extinction and reddening, we determine the average of the ratios of total to selective extinction to be A/E = 1.44 ± 0.01, A/E = 0.494 ± 0.006, and AH/EJ-H = 1.42 ± 0.02, which are significantly smaller than those obtained in previous studies. From these ratios, we estimate that AJ : AH : A = 1 : 0.573 ± 0.009 : 0.331 ± 0.004 and EJ-H/E = 1.72 ± 0.04, and we find that the power law Aλ ∝ λ-1.99±0.02 is a good approximation over these wavelengths. Moreover, we find a small variation in A/E across our survey. This suggests that the infrared extinction law changes from one line of sight to another, and the so-called universality does not necessarily hold in the infrared wavelengths.


The Astrophysical Journal | 2010

MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY

S. K. Leggett; B. Burningham; Didier Saumon; Mark S. Marley; S. J. Warren; R. L. Smart; Hugh R. A. Jones; P. W. Lucas; D. J. Pinfield; Motohide Tamura

Original article can be found at: http://www.iop.org/EJ/journal/apj [Full text of this article is not available in the UHRA]


The Astrophysical Journal | 2011

Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

Jun Hashimoto; Motohide Tamura; Takayuki Muto; Tomoyuki Kudo; Misato Fukagawa; T. Fukue; M. Goto; C. A. Grady; T. Henning; Klaus-Werner Hodapp; Mitsuhiko Honda; Shu-ichiro Inutsuka; Eiichiro Kokubo; Gillian R. Knapp; Michael W. McElwain; Munetake Momose; Nagayoshi Ohashi; Yoshiko K. Okamoto; Michihiro Takami; Edwin L. Turner; John P. Wisniewski; Markus Janson; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; Taras Golota; Olivier Guyon; Yutaka Hayano; Masahiko Hayashi

We report high-resolution 1.6 μm polarized intensity (PI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (015) up to 554 AU (385), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (140 AU) of the disk while confirming the previously reported outer (r 200 AU) spiral structure. We have imaged a double ring structure at ~40 and ~100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is ~45 AU or less) within two rings, as well as three prominent PI peaks at ~40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (r > 20 AU) planets.


Monthly Notices of the Royal Astronomical Society | 2004

Variable stars in the Magellanic Clouds: results from OGLE and SIRIUS

Yoshifusa Ita; Toshihiko Tanabe; Noriyuki Matsunaga; Yasushi Nakajima; Chie Nagashima; Takahiro Nagayama; Daisuke Kato; Mikio Kurita; Tetsuya Nagata; Shuji Sato; Motohide Tamura; Hidehiko Nakaya; Yoshikazu Nakada

We have performed a cross-identification between Optical Gravitational Lensing Experiment II (OGLE-II) data and single-epoch Simultaneous three-colour Infrared Imager for Unbiased Surveys (SIRIUS) near-infrared (NIR) JHK survey data in the Large and Small Magellanic Clouds (LMC and SMC, respectively). After eliminating obvious spurious variables, variables with too few good data and variables that seem to have periods longer than the available baseline of the OGLE-II data, we determined the pulsation periods for 8852 and 2927 variables in the LMC and SMC, respectively. Based on these homogeneous data, we studied the pulsation properties and metallicity effects on period–K magnitude (PK) relations by comparing the variable stars in the LMC and SMC. The sample analysed here is much larger than the previous studies, and we found the following new features in the PK diagram. (1) Variable red giants in the SMC form parallel sequences on the PK plane, just like those found by Wood in the LMC. (2) Both sequences A and B of Wood have discontinuities, and they occur at the K-band luminosity of the tip of the red giant branch. (3) The sequence B of Wood separates into three independent sequences B± and C′. (4) A comparison between the theoretical pulsation models and observational data suggests that the variable red giants on sequences C and newly discovered C′ are pulsating in the fundamental and first overtone modes, respectively. (5) The theory cannot explain the pulsation mode of sequences A± and B±, and they are unlikely to be the sequences for the first and second overtone pulsators, as was previously suggested. (6) The zero-points of PK relations of Cepheids in the metal deficient SMC are fainter than those of the LMC by ≈0.1 mag but those of SMC Miras are brighter than those of the LMC by ≈0.13 mag (adopting the distance modulus offset between the LMC and SMC to be 0.49 mag and assuming the slopes of the PK relations are the same in the two galaxies), which are probably due to metallicity effects.


The Astrophysical Journal | 2004

Spiral Structure in the Circumstellar Disk around AB Aurigae

Misato Fukagawa; Masahiko Hayashi; Motohide Tamura; Yoichi Itoh; Saeko S. Hayashi; Yumiko Oasa; Taku Takeuchi; J.-I. Morino; Koji Murakawa; Shin Oya; Takuya Yamashita; Hiroshi Suto; Satoshi Mayama; Takahiro Naoi; Miki Ishii; Tae-Soo Pyo; Takayuki Nishikawa; Naruhisa Takato; Tomonori Usuda; Hiroyasu Ando; Masanori Iye; Shoken M. Miyama; Norio Kaifu

We present a near-infrared image of the Herbig Ae star AB Aur obtained with the Coronagraphic Imager with Adaptive Optics mounted on the Subaru Telescope. The image shows a circumstellar emission extending out to a radius of r = 580 AU, with a double spiral structure detected at r = 200-450 AU. The surface brightness decreases as r-3.0±0.1, steeper than the radial profile of the optical emission possibly affected by the scattered light from the envelope surrounding AB Aur. This result, together with the size of the infrared emission similar to that of the 13CO (J = 1-0) disk, suggests that the spiral structure is indeed associated with the circumstellar disk but is not part of the extended envelope. We identified four major spiral arms, which are trailing if the brighter southeastern part of the disk is the near side. The weak gravitational instability, maintained for millions of years by continuous mass supply from the envelope, might explain the presence of the spiral structure at the relatively late phase of the pre-main-sequence period.


The Astrophysical Journal | 2009

Discovery of the Coldest Imaged Companion of a Sun-like Star

Christian Thalmann; Markus Janson; Miwa Goto; Michael W. McElwain; Sebastian Egner; Markus Feldt; Jun Hashimoto; Yutaka Hayano; Thomas Henning; Klaus W. Hodapp; Ryo Kandori; Hubert Klahr; Tomoyuki Kudo; Nobuhiko Kusakabe; Christoph Mordasini; Jun Ichi Morino; Hiroshi Suto; Ryuji Suzuki; Motohide Tamura

We present the discovery of a brown dwarf or possible planet at a projected separation of 19 = 29 AU around the star GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (~5 AU) or direct gravitational collapse (typically 100 AU). The object was detected by direct imaging of its thermal glow with Subaru/HiCIAO. At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B constitutes one of the few known T-type companions, and the coldest ever to be imaged in thermal light around a Sun-like star. Its orbit is likely eccentric and of a size comparable to Plutos orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at 12 at one epoch.


The Astrophysical Journal | 2012

IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP*

Evgenya L. Shkolnik; Guillem Anglada-Escudé; Michael C. Liu; Brendan P. Bowler; Alycia J. Weinberger; Alan P. Boss; I. Neill Reid; Motohide Tamura

We have conducted a kinematic study of 165 young M dwarfs with ages of 300?Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of 25?pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5?m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (3?Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and ? Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages 150?Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

Collaboration


Dive into the Motohide Tamura's collaboration.

Top Co-Authors

Avatar

Nobuhiko Kusakabe

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyu Abe

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Ryo Kandori

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Hashimoto

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Nishikawa

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge