Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Kandori is active.

Publication


Featured researches published by Ryo Kandori.


The Astrophysical Journal | 2013

Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

Masayuki Kuzuhara; Motohide Tamura; Tomoyuki Kudo; Markus Janson; Ryo Kandori; Timothy D. Brandt; Christian Thalmann; David S. Spiegel; Beth A. Biller; Yasunori Hori; R. Suzuki; Adam Burrows; T. Henning; Edwin L. Turner; M. W. McElwain; Amaya Moro-Martin; Takuya Suenaga; Yasuhiro H. Takahashi; Jungmi Kwon; P. W. Lucas; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; H. Fujiwara; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano

Several exoplanets have recently been imaged at wide separations of >10?AU from their parent stars. These span a limited range of ages ( 0.5?mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160?Myr, GJ 504b has an estimated mass of 4 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5?AU exceeds the typical outer boundary of ~30?AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510 K) and has a bluer color (J ? H = ?0.23?mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.


The Astrophysical Journal | 2011

Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

Jun Hashimoto; Motohide Tamura; Takayuki Muto; Tomoyuki Kudo; Misato Fukagawa; T. Fukue; M. Goto; C. A. Grady; T. Henning; Klaus-Werner Hodapp; Mitsuhiko Honda; Shu-ichiro Inutsuka; Eiichiro Kokubo; Gillian R. Knapp; Michael W. McElwain; Munetake Momose; Nagayoshi Ohashi; Yoshiko K. Okamoto; Michihiro Takami; Edwin L. Turner; John P. Wisniewski; Markus Janson; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; Taras Golota; Olivier Guyon; Yutaka Hayano; Masahiko Hayashi

We report high-resolution 1.6 μm polarized intensity (PI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (015) up to 554 AU (385), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (140 AU) of the disk while confirming the previously reported outer (r 200 AU) spiral structure. We have imaged a double ring structure at ~40 and ~100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is ~45 AU or less) within two rings, as well as three prominent PI peaks at ~40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (r > 20 AU) planets.


The Astrophysical Journal | 2009

Discovery of the Coldest Imaged Companion of a Sun-like Star

Christian Thalmann; Markus Janson; Miwa Goto; Michael W. McElwain; Sebastian Egner; Markus Feldt; Jun Hashimoto; Yutaka Hayano; Thomas Henning; Klaus W. Hodapp; Ryo Kandori; Hubert Klahr; Tomoyuki Kudo; Nobuhiko Kusakabe; Christoph Mordasini; Jun Ichi Morino; Hiroshi Suto; Ryuji Suzuki; Motohide Tamura

We present the discovery of a brown dwarf or possible planet at a projected separation of 19 = 29 AU around the star GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (~5 AU) or direct gravitational collapse (typically 100 AU). The object was detected by direct imaging of its thermal glow with Subaru/HiCIAO. At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B constitutes one of the few known T-type companions, and the coldest ever to be imaged in thermal light around a Sun-like star. Its orbit is likely eccentric and of a size comparable to Plutos orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at 12 at one epoch.


The Astrophysical Journal | 2008

The Interstellar Extinction Law toward the Galactic Center. II. V, J, H, and Ks Bands

Shogo Nishiyama; Tetsuya Nagata; Motohide Tamura; Ryo Kandori; Hirofumi Hatano; Shuji Sato; Koji Sugitani

We have determined the ratios of total to selective extinction directly from observations in the optical V band and near-infrared J band toward the Galactic center. The OGLE (Optical Gravitational Lensing Experiment) Galactic bulge fields have been observed with the SIRIUS camera on the Infrared Survey Facility telescope, and we obtain AV/EV–J = 1.251 ± 0.014 and AJ/EV–J = 0.225 ± 0.007. From these ratios, we derive AJ/AV = 0.188 ± 0.005; combining this with the near-infrared extinction ratios obtained in Paper I for more reddened fields near the Galactic center, we obtain AV:AJ:AH:AKs = 1:0.188:0.108:0.062, which implies steeply declining extinction toward longer wavelengths. In particular, it is striking that the Ks-band extinction is ≈1/16 the visual extinction AV, much smaller than the 1/10 usually employed.


The Astronomical Journal | 2005

Near-Infrared Imaging Survey of Bok Globules: Density Structure

Ryo Kandori; Yasushi Nakajima; Motohide Tamura; Ken'ichi Tatematsu; Yuri Aikawa; Takahiro Naoi; Koji Sugitani; Hidehiko Nakaya; Takahiro Nagayama; Tetsuya Nagata; Mikio Kurita; Daisuke Kato; Chie Nagashima; S. Sato

On the basis of near-infrared imaging observations, we derived the visual extinction (AV) distribution toward 10 Bok globules through measurements of both the color excess (EH-K) and the stellar density at J, H, and Ks (star count). Radial column density profiles for each globule were analyzed with the Bonnor-Ebert sphere model. Using the data of our 10 globules and four globules in the literature, we investigated the stability of globules on the basis of ξmax, which characterizes the Bonnor-Ebert sphere, as well as the stability of the equilibrium state against gravitational collapse. We found that more than half the starless globules are located near the critical state (ξmax = 6.5 ± 2). Thus, we suggest that a nearly critical Bonnor-Ebert sphere characterizes the typical density structure of starless globules. The remaining starless globules show clearly unstable states (ξmax > 10). Since unstable equilibrium states are not long maintained, we expect that these globules are on the way to gravitational collapse or that they are stabilized by nonthermal support. It was also found that all the star-forming globules show unstable solutions of ξmax > 10, which is consistent with the fact that they have started gravitational collapse. We investigated the evolution of a collapsing gas sphere whose initial condition is a nearly critical Bonnor-Ebert sphere. We found that the column density profiles of the collapsing sphere mimic those of the static Bonnor-Ebert spheres in unstable equilibrium. The collapsing gas sphere resembles marginally unstable Bonnor-Ebert spheres for a long time. We found that the frequency distribution of ξmax for the observed starless globules is consistent with that from model calculations of the collapsing sphere. In addition to the near-infrared observations, we carried out radio molecular line observations (C18O and N2H + ) toward the same 10 globules. We confirmed that most of the globules are dominated by thermal support. The line width of each globule was used to estimate the cloud temperature including the contribution from turbulence, with which we estimated the distance to the globules from the Bonnor-Ebert model fitting.


The Astrophysical Journal | 2011

NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD

Koji Sugitani; Fumitaka Nakamura; Makoto Watanabe; Motohide Tamura; Shogo Nishiyama; Takahiro Nagayama; Ryo Kandori; Tetsuya Nagata; Shuji Sato; Robert Allen Gutermuth; Grant W. Wilson; Ryohei Kawabe

The Serpens South embedded cluster, which is located in the constricted part of a long, filamentary, infrared dark cloud, is believed to be in a very early stage of cluster formation. We present results of near-infrared (JHKs) polarization observations of the filamentary cloud. Our polarization measurements of near-infrared point sources indicate a well-ordered global magnetic field that is perpendicular to the main filament, implying that the magnetic field is likely to have controlled the formation of the main filament. On the other hand, the sub-filaments, which converge on the central part of the cluster, tend to run along the magnetic field. The global magnetic field appears to be curved in the southern part of the main filament. Such morphology is consistent with the idea that the global magnetic field is distorted by gravitational contraction along the main filament toward the northern part, which contains larger mass. Applying the Chandrasekhar-Fermi method, the magnetic field strength is roughly estimated to be a few ×100 μG, suggesting that the filamentary cloud is close to magnetically critical.


Proceedings of SPIE | 2006

Concept and science of HiCIAO: High contrast instrument for the Subaru next generation adaptive optics

Motohide Tamura; Klaus W. Hodapp; Hideki Takami; Lyu Abe; Hiroshi Suto; Olivier Guyon; Shane Jacobson; Ryo Kandori; Jun Ichi Morino; Naoshi Murakami; Vern Stahlberger; Ryuji Suzuki; Alexander V. Tavrov; Hubert Yamada; Jun Nishikawa; Nobuharu Ukita; Jun Hashimoto; Hideyuki Izumiura; Masahiko Hayashi; Tadashi Nakajima; Tetsuo Nishimura

Direct exploration of exoplanets is one of the most exciting topics in astronomy. Our current efforts in this field are concentrated on the Subaru 8.2m telescope at Mauna Kea, Hawaii. Making use of the good observing site and the excellent image quality, the infrared coronagraph CIAO (Coronagraphic Imager with Adaptive Optics) has been used for various kinds of surveys, which is the first dedicated cold coronagraph on the 8-10m class telescopes. However, its contrast is limited by the low-order adaptive optics and a limited suppression of the halo speckle noise. HiCIAO is a new high-contrast instrument for the Subaru telescope. HiCIAO will be used in conjunction with the new adaptive optics system (188 actuators and/or its laser guide star - AO188/LGSAO188) at the Subaru infrared Nasmyth platform. It is designed as a flexible camera comprising several modules that can be configured into different modes of operation. The main modules are the AO module with its future extreme AO capability, the warm coronagraph module, and the cold infrared camera module. HiCIAO can combine coronagraphic techniques with either polarization or spectral simultaneous differential imaging modes. The basic concept of such differential imaging is to split up the image into two or more images, and then use either different planes of polarization or different spectral filter band-passes to produce a signal that distinguishes faint objects near a bright central object from scattered halo or residual speckles. In this contribution, we will outline the HiCIAO instrument, its science, and performance simulations. The optical and mechanical details are described by Hodapp et al. (2006)1. We also present a roadmap of Japanese facilities and future plans, including ASTRO-F (AKARI), SPICA, and JTPF, for extrasolar planet explorations.


The Astrophysical Journal | 2013

New Techniques for High-contrast Imaging with ADI: The ACORNS-ADI SEEDS Data Reduction Pipeline

Timothy D. Brandt; Michael W. McElwain; Edwin L. Turner; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; Taras Golota; Miwa Goto; C. A. Grady; Olivier Guyon; Jun Hashimoto; Yutaka Hayano; Masahiko Hayashi; S. Hayashi; T. Henning; Klaus-Werner Hodapp; Miki Ishii; Masanori Iye; Markus Janson; Ryo Kandori; Gillian R. Knapp; Tomoyuki Kudo; Nobuhiko Kusakabe; Masayuki Kuzuhara; Jungmi Kwon; Takashi Matsuo; Shoken M. Miyama; J.-I. Morino; Amaya Moro-Martin

We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ~20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.


The Astrophysical Journal | 2013

The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

Markus Janson; Timothy D. Brandt; Amaya Moro-Martin; Tomonori Usuda; Christian Thalmann; Miwa Goto; Thayne Currie; M. W. McElwain; Yoichi Itoh; Misato Fukagawa; Justin R. Crepp; Masayuki Kuzuhara; Jun Hashimoto; Tomoyuki Kudo; Nobuhiko Kusakabe; Lyu Abe; Wolfgang Brandner; Sebastian Egner; Markus Feldt; C. A. Grady; Olivier Guyon; Yutaka Hayano; Masahiro Hayashi; Saeko S. Hayashi; Thomas Henning; Klaus W. Hodapp; Miki Ishii; Masanori Iye; Ryo Kandori; Gillian R. Knapp

Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris-disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here, we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that β Pic b-like planets (~10 M jup planets around G-A-type stars) near the gap edges are less frequent than 15%-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than β Pic b.


Proceedings of SPIE | 2010

Performance characterization of the HiCIAO instrument for the Subaru Telescope

Ryuji Suzuki; Tomoyuki Kudo; Jun Hashimoto; Joseph C. Carson; Sebastian Egner; Miwa Goto; Masayuki Hattori; Yutaka Hayano; Klaus W. Hodapp; Meguro Ito; Masanori Iye; Shane Jacobson; Ryo Kandori; Nobuhiko Kusakabe; Masayuki Kuzuhara; Taro Matsuo; Michael W. McElwain; Jun Ichi Morino; Shin Oya; Yoshihiko Saito; Richard Shelton; Vern Stahlberger; Hiroshi Suto; Hideki Takami; Christian Thalmann; Makoto Watanabe; Hubert Yamada; Motohide Tamura

HiCIAO is a near-infrared, high contrast instrument which is specifically designed for searches and studies for extrasolar planets and proto-planetary/debris disks on the Subaru 8.2 m telescope. A coronagraph technique and three differential observing modes, i.e., a dual-beam simultaneous polarimetric differential imaging mode, quad-beam simultaneous spectral differential imaging mode, and angular differential imaging mode, are used to extract faint objects from the sea of speckle around bright stars. We describe the instrument performances verified in the laboratory and during the commissioning period. Readout noise with a correlated double sampling method is 15 e- using the Sidecar ASIC controller with the HAWAII-2RG detector array, and it is as low as 5 e- with a multiple sampling method. Strehl ratio obtained by HiCIAO on the sky combined with the 188-actuator adaptive optics system (AO188) is 0.4 and 0.7 in the H and K-band, respectively, with natural guide stars that have R ~ 5 and under median seeing conditions. Image distortion is correctable to 7 milli-arcsec level using the ACS data as a reference image. Examples of contrast performances in the observing modes are presented from data obtained during the commissioning period. An observation for HR 8799 in the angular differential imaging mode shows a clear detection of three known planets, demonstrating the high contrast capability of AO188+HiCIAO.

Collaboration


Dive into the Ryo Kandori's collaboration.

Top Co-Authors

Avatar

Nobuhiko Kusakabe

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Hashimoto

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Lyu Abe

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. A. Grady

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge