Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motonori Ohno is active.

Publication


Featured researches published by Motonori Ohno.


FEBS Letters | 1996

Accelerated evolution of crotalinae snake venom gland serine proteases

Masanobu Deshimaru; Tomohisa Ogawa; Kinichi Nakashima; Ikuo Nobuhisa; Takahito Chijiwa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Mineo Niwa; Ikuo Yamashina; Shosaku Hattori; Motonori Ohno

Eight cDNAs encoding serine proteases isolated from Trimeresurus flavoviridis (habu snake) and T. gramineus (green habu snake) venom gland cDNA libraries showed that nonsynonymous nucleotide substitutions have accumulated in the mature protein‐coding regions to cause amino acid changes. Southern blot analysis of T. flavoviridis genomic DNAs using two proper probes indicated that venom gland serine protease genes form a multigene family in the genome. These observations suggest that venom gland serine proteases have diversified their amino acid sequences in an accelerating manner. Since a similar feature has been previously discovered in crotalinae snake venom gland phospholipase A2 (PLA2) isozyme genes, accelerated evolution appears to be universal in plural isozyme families of crotalinae snake venom gland.


Toxicon | 1999

Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro

Bruno Lomonte; Yamileth Angulo; Stefano Rufini; Wonhwa Cho; José R. Giglio; Motonori Ohno; José J. Daniele; Patricia A. Geoghegan; José María Gutiérrez

A rapid in vitro cytolytic effect of some myotoxic phospholipases A2 (PLA2s) isolated from the venoms of Viperidae snakes has been previously described. This study was undertaken to investigate if cytolytic activity is a common property of the myotoxic proteins from this group. Murine endothelial cells (tEnd) and skeletal muscle myotubes (C2C12) were utilized as targets. The release of lactic dehydrogenase was quantified as a measure of cell damage, 3 h after exposure of cells to the different PLA2s, including representatives from the genera Bothrops, Agkistrodon, Trimeresurus, Crotalus (family Viperidae), and Notechis (family Elapidae). All of the group II myotoxic PLA2s tested displayed rapid cytolytic activity when tested in the micromolar range of concentrations (8-32 microM). In contrast, the group I myotoxic PLA2 notexin was devoid of this activity. Aspartate-49 and lysine-49 PLA2 group II variants showed a comparable cytolytic effect. Skeletal muscle myotubes, obtained after fusion and differentiation of C2C12 myoblasts, were significantly more susceptible to the cytolytic action of myotoxins than endothelial cells, previously reported to be more susceptible than undifferentiated myoblasts under the same assay conditions. Cytolytic activity appears to be a common characteristic of group II myotoxic PLA2s of the Viperidae. Bee venom PLA2, a group III enzyme of known myotoxicity, also displayed cytotoxic activity on C2C12 myotubes, being devoid of activity on endothelial cells. These results suggest that in vitro differentiated skeletal muscle myotubes may represent a suitable model target for the study of myotoxic PLA2s of the structural group II found in snake venoms.


Toxicon | 1990

Purification and amino acid sequence of basic protein I, a lysine-49-phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake)

Kiyomi Yoshizumi; Song-Yuan Liu; Toshiyuki Miyata; Sawako Saita; Motonori Ohno; Sadaaki Iwanaga; Hiroshi Kihara

A basic protein (pI 10.2), named basic protein I, was purified to homogeneity from the venom of Trimeresurus flavoviridis (Habu snake) after four chromatographic steps. The amino acid sequence of this protein was determined by sequencing the S-pyridylethylated derivative of the protein and its peptides produced by chemical (cyanogen bromide and formic acid) and enzymatic (chymotrypsin, Achromobacter protease I, and Staphylococcus aureus V8 protease) cleavages. The protein consisted of 122 amino acid residues and was similar in sequence to phospholipases A2 from the venoms of crotalid and viperid snakes. A most striking feature of this protein is that aspartic acid at the 49th position common in phospholipases A2 is replaced by lysine. When the protein acted on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine, oleic acid was preferentially released, indicating that the protein has phospholipase A2 activity. Its molar activity toward 1,2-dilauroyl-sn-glycero-3-phosphorylcholine, however, was 1.5% that of T. flavoviridis phospholipase A2 isolated previously. The fact that both affinity to Ca2+ and reactivity to p-bromophenacyl bromide of basic protein I are approximately one order of magnitude lower than those of T. flavoviridis phospholipase A2 might explain the low activity of basic protein I.


Immunopharmacology | 1999

Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom.

Shigesada Higuchi; Nobuhiro Murayama; Ken-ichi Saguchi; Hiroaki Ohi; Yoshiaki Fujita; Antonio C.M. Camargo; Tomohisa Ogawa; Masanobu Deshimaru; Motonori Ohno

Cloning of cDNAs encoding bradykinin-potentiating peptides (BPPs)-C-type natriuretic peptide (CNP) precursor or its homologue was performed for cDNA libraries of Bothrops jararaca (South American snake), Trimeresurus flavoviridis, Trimeresurus gramineus and Agkistrodon halys blomhoffi (Asian snakes), all belonging to Crotalinae subfamily. Each cDNA library was constructed from the venom glands of a single snake to preclude ambiguity by intraspecies variation in venom components. Thirteen positive clones derived from B. jararaca were divided into two types depending on restriction sites. Differences in the nucleotide sequence arise at three locations and two of them accompanied amino acid conversions. Despite the differences, both types of cDNA clones encode the BPP-CNP precursor of 256 amino acid residues. Sequence analysis demonstrated that cDNA clones from three Asian snakes encode homologues of the BPP-CNP precursor from B. jararaca. In a precursor polypeptide, a signal sequence (approximately 25 aa) at the N-terminus is followed by sequences of BPP or the analogue (5-13 aa) with flanking spacer sequences (indefinite number of aa), an intervening linker sequence (approximately 144 aa) with unidentified function, and a CNP sequence (22 aa) with a preceding processing signal sequence (10 aa). cDNA clones from A. halys blomhoffi encode two distinct peptides in place of BPP, and T. flavoviridis and T. gramineus were shown to have considerably different sequences in the BPP domain from those known as BPP sequences. The present results provide evidence for a wide distribution of the orthologous gene expressing a series of bioactive peptides among Crotalinae subfamily.


Gene | 1996

Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes.

Ikuo Nobuhisa; Kinichi Nakashima; Masanobu Deshimaru; Tomohisa Ogawa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Yoshiyuki Sakaki; Shosaku Hattori; Hiroshi Kihara; Motonori Ohno

Three Trimeresurus okinavensis (To; himehabu snake, Crotalinae) venom gland phospholipase A2 (PLA2) isozymeencoding genes, gPLA2-o1, gPLA2-o2 and gPLA2-o3, were isolated from its genomic DNA library. The nucleotide (nt) sequence analysis revealed that two of the three genes (gPLA2-o2 and gPLA2-o3) occasionally have been converted to inactivated genes by introduction of one base insertion or substitution. It was confirmed from Southern blot analysis that the To haploid genome contains only three venom gland PLA2 isozyme genes herein isolated. Comparison of these genes showed that nonsynonymous nt substitutions have occurred more frequently than synonymous nt substitutions in the protein-coding regions, except for the signal-peptide coding domain, implying that To venom gland PLA2 isozyme genes have evolved via accelerated evolution. Such an evolutionary feature of To venom gland PLA2 isozyme genes proves the general universality of accelerated evolution previously drawn for venom gland PLA2 isozyme genes of other crotalinae snakes. The variability in the mature protein-coding regions of three To venom gland PLA2 isozyme genes appears to have been brought about by natural selection for point mutations.


Journal of Molecular Evolution | 1995

Molecular evolution of group II phospholipases A2.

Tomohisa Ogawa; Masato Kitajima; Kinichi Nakashima; Yoshiyuki Sakaki; Motonori Ohno

The nucleotide sequences of 13 cDNAs encoding group II phospholipases A2 (PLA2S), which are from viperidae snake venoms and from mammalian sources, were aligned and analyzed by phylogenetic trees constructed using various components of the sequences. The evolutionary trees derived from the combined sequences of the untranslated (5′ and 3′) region and the signal peptide region of cDNAs were in accord with the consequences from taxonomy. In contrast, the evolutionary trees from the mature protein-coding region sequences of cDNAs and from the amino acid sequences showed random patterns. These observations indicated that the mature protein-coding region has evolved through a process differently from the untranslated and signal peptide regions. The trees built from the nucleotide differences at each of three positions of codons in the mature protein-coding region suggested that snakevenom-gland PLA2 genes have evolved via a process different from mammalian PLA2 genes. The occurrence of accelerated evolution has been recently discovered in Trimeresurus flavoviridis venom-gland group II PLA2 isozyme genes (Nakashima et al. 1993, Proc Natl Acad Sci USA 90:5964–5968), so the present phylogenetic analysis together with the estimation of nucleotide divergence of cDNAs provides further evidence that snakevenom-group II PLA2 isozyme genes have evolved by accelerated evolution to gain diverse physiological activities.


Journal of Molecular Evolution | 2003

Interisland Evolution of Trimeresurus flavoviridis Venom Phospholipase A2 Isozymes

Takahito Chijiwa; Yoko Yamaguchi; Tomohisa Ogawa; Masanobu Deshimaru; Ikuo Nobuhisa; Kinichi Nakashima; Naoko Oda-Ueda; Yasuyuki Fukumaki; Shosaku Hattori; Motonori Ohno

Abstract Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan. A phospholipase A2 (PLA2), named PL-Y, was isolated from Okinawa T. flavoviridis venom and its amino acid sequence was determined from both protein and cDNA. PL-Y was unable to induce edema. In contrast, PLA-B, a PLA2 from Tokunoshima T. flavoviridis venom, which is different at only three positions from PL-Y, is known to induce edema. A new PLA2, named PLA-B′, which is similar to PLA-B, was cloned from Amami-Oshima T. flavoviridis venom gland. Three T. flavoviridis venom basic [Asp49]PLA2 isozymes, PL-Y (Okinawa), PLA-B (Tokunoshima), and PLA-B′ (Amami-Oshima), are identical in the N-terminal half but have one to four amino acid substitutions in the β1-sheet and its vicinity. Such interisland sequence diversities among them are due to isolation in the different environments over 1 to 2 million years and appear to have been brought about by natural selection for point mutation in their genes. Otherwise, a major PLA2, named PLA2, ubiquitously exists in the venoms of T. flavoviridis snakes from the three islands with one to three synonymous substitutions in their cDNAs. It is assumed that the PLA2 gene is a prototype among T. flavoviridis venom PLA2 isozyme genes and has hardly undergone nonsynonymous mutation as a principal toxic component. Phylogenetic analysis based on the amino acid sequences revealed that T. flavoviridis PLA2 isozymes are clearly separated into three groups, PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Basic [Asp49]PLA2-type isozymes may manifest their own particular toxic functions different from those of the isozymes of the PLA2 type and [Lys49]PLA2 type.


Immunology | 2002

Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase

Chieko Yamamoto; Daisuke Tsuru; Naoko Oda-Ueda; Motonori Ohno; Shosaku Hattori; Sung-Teh Kim

We have recently shown that crude Trimeresurus flavoviridis (habu snake) venom has a strong capability for activating the human alternative complement system. To identify the active component, the crude venom was fractionated and purified by serial chromatography using Sephadex G‐100, CM‐cellulose C‐52, diethylaminoethyl‐Toyopearl 650M, and Butyl‐Toyopearl, and the active fractions were evaluated by the C3a‐releasing and soluble membrane attack complex‐forming activities. Two peak fractions with the highest activities were detected after gel filtration and ion exchange chromatography, and the first fraction was purified to homogeneity. The homogeneous protein was examined for its N‐terminal amino acid sequence by Edman degradation. The determined sequence of 25 amino acids completely coincided with that of a previously reported serine protease with coagulant activity, flavoxobin, purified from the same snake venom. To elucidate the molecular mechanism of the complement activation, the reactive products of the mixture of the purified human C3 and flavoxobin were examined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis. The digesting pattern revealed that flavoxobin cleaves the α chain of the C3 molecule into two fragments. The N‐terminal amino acid sequences for the remnant fragments of C3 disclosed that flavoxobin severs the human C3 at the Arg726‐Ser727 site to form C3b and C3a the way C3bBb, the human alternative C3 convertase, does. In conclusion, flavoxobin acts as a novel, heterologous C3 convertase that independently cleaves human C3 and kick‐starts the complement cascade.


Toxicon | 1988

Purification and characterization of L-amino acid oxidase from the venom of Trimeresurus mucrosquamatus (Taiwan habu snake)

Masayuki Ueda; Chun-Chang Chang; Motonori Ohno

L-Amino acid oxidase (EC.1.4.3.2) was purified to homogeneity via four steps consisting of Sephadex G-100, CM-Toyopearl 650M, and first and second granulated hydroxyapatite column chromatographies. The mol. wt of the enzyme was 140,000 when estimated by analytical gel filtration and was 70,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the enzyme is composed of two identical subunits. The enzyme has an absorption spectrum characteristic of flavoprotein, contains 2 moles of FMN per mole of enzyme and has an isoelectric point of 5.4. The enzyme oxidatively deaminated hydrophobic amino acids such as Leu, Met, Phe, and Tyr while basic amino acids except for Lys were also oxidized though at slower rates. This specificity was generally similar, with some exceptions, to that of the enzyme from Trimeresurus flavoviridis venom. For oxidative deamination of Leu, Km and maximum velocity of the enzyme were 1.17 mM and 9.9 units/mg, respectively, at pH 7.6. The activity was inhibited almost completely by heavy metal ions, some aromatic benzoates and sulfhydryl reagents but not by metal-chelating agents.


Journal of Molecular Evolution | 2003

Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2.

Takahito Chijiwa; Sachiko Hamai; Shoji Tsubouchi; Tomohisa Ogawa; Masanobu Deshimaru; Naoko Oda-Ueda; Shosaku Hattori; Hiroshi Kihara; Susumu Tsunasawa; Motonori Ohno

Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2’s based on the amino acid sequences revealed that neurotoxic PLA2’s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2’s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2‘s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2’s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation.

Collaboration


Dive into the Motonori Ohno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kihara

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge