Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahito Chijiwa is active.

Publication


Featured researches published by Takahito Chijiwa.


FEBS Letters | 1996

Accelerated evolution of crotalinae snake venom gland serine proteases

Masanobu Deshimaru; Tomohisa Ogawa; Kinichi Nakashima; Ikuo Nobuhisa; Takahito Chijiwa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Mineo Niwa; Ikuo Yamashina; Shosaku Hattori; Motonori Ohno

Eight cDNAs encoding serine proteases isolated from Trimeresurus flavoviridis (habu snake) and T. gramineus (green habu snake) venom gland cDNA libraries showed that nonsynonymous nucleotide substitutions have accumulated in the mature protein‐coding regions to cause amino acid changes. Southern blot analysis of T. flavoviridis genomic DNAs using two proper probes indicated that venom gland serine protease genes form a multigene family in the genome. These observations suggest that venom gland serine proteases have diversified their amino acid sequences in an accelerating manner. Since a similar feature has been previously discovered in crotalinae snake venom gland phospholipase A2 (PLA2) isozyme genes, accelerated evolution appears to be universal in plural isozyme families of crotalinae snake venom gland.


Journal of Molecular Evolution | 2003

Interisland Evolution of Trimeresurus flavoviridis Venom Phospholipase A2 Isozymes

Takahito Chijiwa; Yoko Yamaguchi; Tomohisa Ogawa; Masanobu Deshimaru; Ikuo Nobuhisa; Kinichi Nakashima; Naoko Oda-Ueda; Yasuyuki Fukumaki; Shosaku Hattori; Motonori Ohno

Abstract Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan. A phospholipase A2 (PLA2), named PL-Y, was isolated from Okinawa T. flavoviridis venom and its amino acid sequence was determined from both protein and cDNA. PL-Y was unable to induce edema. In contrast, PLA-B, a PLA2 from Tokunoshima T. flavoviridis venom, which is different at only three positions from PL-Y, is known to induce edema. A new PLA2, named PLA-B′, which is similar to PLA-B, was cloned from Amami-Oshima T. flavoviridis venom gland. Three T. flavoviridis venom basic [Asp49]PLA2 isozymes, PL-Y (Okinawa), PLA-B (Tokunoshima), and PLA-B′ (Amami-Oshima), are identical in the N-terminal half but have one to four amino acid substitutions in the β1-sheet and its vicinity. Such interisland sequence diversities among them are due to isolation in the different environments over 1 to 2 million years and appear to have been brought about by natural selection for point mutation in their genes. Otherwise, a major PLA2, named PLA2, ubiquitously exists in the venoms of T. flavoviridis snakes from the three islands with one to three synonymous substitutions in their cDNAs. It is assumed that the PLA2 gene is a prototype among T. flavoviridis venom PLA2 isozyme genes and has hardly undergone nonsynonymous mutation as a principal toxic component. Phylogenetic analysis based on the amino acid sequences revealed that T. flavoviridis PLA2 isozymes are clearly separated into three groups, PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Basic [Asp49]PLA2-type isozymes may manifest their own particular toxic functions different from those of the isozymes of the PLA2 type and [Lys49]PLA2 type.


Journal of Molecular Evolution | 2003

Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2.

Takahito Chijiwa; Sachiko Hamai; Shoji Tsubouchi; Tomohisa Ogawa; Masanobu Deshimaru; Naoko Oda-Ueda; Shosaku Hattori; Hiroshi Kihara; Susumu Tsunasawa; Motonori Ohno

Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2’s based on the amino acid sequences revealed that neurotoxic PLA2’s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2’s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2‘s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2’s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation.


Gene | 1997

Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake

Ikuo Nobuhisa; Masanobu Deshimaru; Takahito Chijiwa; Kinichi Nakashima; Tomohisa Ogawa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Shosaku Hattori; Hiroshi Kihara; Motonori Ohno

Inhibitors (PLIs) against snake venom gland phospholipases A2 (PLA2s) have been found in their sera. A cDNA encoding a PLI from Trimeresurus flavoviridis (Tf, habu snake, Crotalinae) serum, cPLI-A, was isolated from the Tf liver cDNA library and sequenced. Northern blot analysis with cPLI-A showed that PLIs are expressed only in liver. Genes for PLIs, gPLI-A and gPLI-B, were isolated from the Tf genomic DNA library and their nucleotide (nt) sequences were determined. The genes consisted of four exons and three introns, and exon 4 encoded the carbohydrate recognition domain (CRD)-like motif. Comparison of the nt sequences between gPLI-A and gPLI-B showed that these genes are highly homologous, including introns, except that exon 3 is rich in nonsynonymous nt substitutions which are almost four times as frequent as synonymous nt substitutions. This evolutionary feature of PLI genes is different from that of venom gland PLA2 isozyme genes in which nonsynonymous nt substitutions are spread over the entire mature protein-coding region.


Bioscience, Biotechnology, and Biochemistry | 2011

A [Lys49]phospholipase A2 from Protobothrops flavoviridis Venom Induces Caspase-Independent Apoptotic Cell Death Accompanied by Rapid Plasma-Membrane Rupture in Human Leukemia Cells

Tatsuo Murakami; Nobuyuki Kamikado; Ryo Fujimoto; Kazuhiko Hamaguchi; Hitomi Nakamura; Takahito Chijiwa; Motonori Ohno; Naoko Oda-Ueda

Protobothrops flavoviridis venom contains plural phospholipase A2 (PLA2) isozymes. A [Lys49]PLA2 called BPII induced cell death in human leukemia cells. PLA2, an [Asp49]PLA2 that has much stronger lipolytic activity than BPII, failed to induce cell death. BPII-treated cells showed morphological changes, DNA fragmentation, and nuclear condensation. This BPII-induced apoptotic cell death was neither inhibited by inhibitors of caspases 3 and 6 nor accompanied by activation of procaspase 3, indicating that BPII-induced cell death is caspase independent. Since inactive p-bromophenacylated BPII induced cell death, BPII-induced apoptotic cell death is independent of PLA2 lipolytic activity. Rapid externalization of phosphatidylserine in BPII-treated cells was observed for fluorescein isothiocyanate (FITC)-labeled annexin V. In the cells treated with BPII, this spread over the cell membranes, implying that the cell toxicity of BPII is mediated via its cell-surface receptor.


Journal of Molecular Evolution | 2008

Identification of the B Subtype of γ-Phospholipase A2 Inhibitor from Protobothrops flavoviridis Serum and Molecular Evolution of Snake Serum Phospholipase A2 Inhibitors

Shuhei So; Takahito Chijiwa; Naoki Ikeda; Ikuo Nobuhisa; Naoko Oda-Ueda; Shosaku Hattori; Motonori Ohno

A cDNA encoding a novel phospholipase A2 (PLA2) inhibitor (PLI) was isolated from a Protobothrops flavoviridis snake (Tokunoshima island, Japan) liver cDNA library. This cDNA encoded a signal peptide of 19 amino acids followed by a mature protein of 181 amino acids. Its N-terminal amino acid sequence was completely in accord with that of a PLI, named PLI-II, previously found in P. flavoviridis serum. PLI-II showed a high similarity in sequence to the B subtype of γPLI, denoted γPLI-B, isolated from Agkistrodon blomhoffii siniticus serum. Thus, PLI-II is P. flavoviridis serum γPLI-B. Since PLI-I, previously isolated from P. flavoviridis serum, can be assigned as γPLI-A, P. flavoviridis serum contains both A and B subtypes of γPLI. Phylogenetic analysis of γPLIs from the sera of various kinds of snakes, Elapinae, Colubrinae, Laticaudinae, Acanthophiinae, Crotalinae, and Pythonidae, based on the amino acid sequences revealed that A and B subtypes of γPLIs are clearly separated from each other. It was also found that phylogenetic topologies of γPLIs are in good agreement with speciation processes of snakes. The BLAST search followed by analyses with particular Internet search engines of proteins with Cys/loop frameworks similar to those of PLI-II and PLI-I revealed that γPLI-Bs, including PLI-II and PLI-II-like proteins from mammalian sources, form a novel PLI-II family which possesses the common Cys/loop frameworks in the anterior and posterior three-finger motifs in the molecules. Several lines of evidence suggest that PLI-II is evolutionarily ancestral to PLI-I.


Bioscience, Biotechnology, and Biochemistry | 2012

Structural Characteristics and Evolution of a Novel Venom Phospholipase A2 Gene from Protobothrops flavoviridis

Takahito Chijiwa; Naoki Ikeda; Haruna Masuda; Hiroaki Hara; Naoko Oda-Ueda; Shosaku Hattori; Motonori Ohno

A novel phospholipase A2 (PLA2) gene, named PfPLA 6, was found in a 6,328-bp NIS-1(5′)-a segment in the Protobothrops flavoviridis (Habu, Crotalinae) genome. A comparison of the aligned nucleotide sequences of Viperidae (Viperinae and Crotalinae) venom PLA2 genes, including PfPLA 6, revealed the deletion of a 12-bp segment called S1EX 1 and a 55-bp segment called S2EX 1 in exon 1 and the interposition of a 219-bp segment called SINT 2 (SINE) in intron 2. A classification of Viperidae PLA2 genes based on these structural modes indicated that the A-type genes (without SINE), including PfPLA 6, are evolutionarily ancestral to the B-type (Viperinae) and C-type (Crotalinae) PLA2 genes (both with SINE). Since PfPLA 6 is a pseudogene, an active prototype of PfPLA 6 can be assumed to be the ancestral PLA2 gene. Putative evolutionary processes from this A-type prototype PLA2 gene to descendent PLA2 genes are discussed.


Protein Expression and Purification | 2008

A novel recombinant system for functional expression of myonecrotic snake phospholipase A2 in Escherichia coli using a new fusion affinity tag

Minae Seto; Tomohisa Ogawa; Kyousuke Kodama; Koji Muramoto; Yoshitaka Kanayama; Yasuo Sakai; Takahito Chijiwa; Motonori Ohno

A novel recombinant expression system in Escherichia coli was developed using conger eel galectin, namely, congerin II, as an affinity tag. This system was applied for the functional expression of myotoxic lysine-49-phospholipase A(2) ([Lys(49)]PLA(2)), termed BPII and obtained from Protobothrops flavoviridis (Pf) venom. Recombinant Pf BPII fused with a congerin tag has been successfully expressed as a soluble fraction and showed better quantitative yield when folded correctly. The solubility of the recombinant congerin II-tagged BPII increased up to >90% in E. coli strain JM109 when coexpressed with the molecular chaperones GroEL, GroES, and trigger factor (Tf). The tag protein was cleaved by digestion with restriction protease, such as alpha-thrombin or Microbacterium liquefaciens protease (MLP), to obtain completely active recombinant BPII. Thus, the congerin-tagged fusion systems containing the cleavage recognition site for alpha-thrombin or MLP were demonstrated to be highly efficient and useful for producing proteins of desired solubility and activity.


Bioscience, Biotechnology, and Biochemistry | 2011

Identification and Evolution of Venom Phospholipase A2 Inhibitors from Protobothrops elegans Serum

Shuhei So; Tatsuo Murakami; Naoki Ikeda; Takahito Chijiwa; Naoko Oda-Ueda; Takeshi Kuraishi; Shosaku Hattori; Motonori Ohno

The cDNAs encoding venom phospholipase A2 (PLA2) inhibitors (PLIs), named Protobothrops elegans (Pe)γPLI-A, PeγPLI-B, PeαPLI-A, and PeαPLI-B, were cloned from the P. elegans liver cDNA library. They were further divided into several constituents due to nucleotide substitutions in their open reading frames. For PeαPLI-A, two constituents, PeαPLI-Aa and PeαPLI-Ab, were identified due to three nonsynonymous substitutions in exon 3. Far-western blot and mass-spectrometry analysis of the P. elegans serum proteins showed the presence of γPLIs, and αPLIs, which can bind venom PLA2s. In αPLIs from Protobothrops sera, A or B subtype-specific amino acid substitutions are concentrated only in exon 3. A comparison of γPLIs showed that γPLI-As are conserved and γPLI-Bs diversified. Mathematical analysis of the nucleotide sequences of Protobothrops γPLI-B cDNAs revealed that the particular loops in the three-finger motifs diversified by accelerated evolution. Such evolutionary features should have made serum PLIs acquire their respective inhibitory activities to adapt to venom PLA2 isozymes.


Toxicon | 2009

Island specific expression of a novel [Lys49]phospholipase A2 (BPIII) in Protobothrops flavoviridis venom in Amami–Oshima, Japan

Tatsuo Murakami; Toru Kariu; Shinya Takazaki; Shosaku Hattori; Takahito Chijiwa; Motonori Ohno; Naoko Oda-Ueda

In search of the transcripts expressed in Protobothrops flavoviridis venom gland, 466 expressed sequence tags (ESTs) were generated from the venom gland cDNA library of P. flavoviridis in Amami-Oshima, Japan. The sequencing of randomly selected cDNA clones followed by identification in similarity search against existing databases led to the finding of a novel lysine-49-phospholipase A(2) ([Lys(49)]PLA(2)) clone. It coded for one amino acid-substituted BPII homologue or two amino acids-substituted BPI homologue in which BPII and BPI are [Lys(49)]PLA(2)s contained in Amami-Oshima and Tokunoshima P. flavoviridis venoms. This isozyme, named BPIII, was isolated from Amami-Oshima P. flavoviridis venom. BPIII gave a specific [M+2H](2+) peak of m/z 736.3 on mass spectrometry (MS) analysis after S-carboxamidomethylation and trypsin digestion when compared with BPII. It became evident from MS analysis after S-carboxamidomethylation and trypsin digestion of the mixed protein peaks ranging from BPI to BPII obtained by fractionation on a carboxymethyl cellulose column of Amami-Oshima and Tokunoshima P. flavoviridis venoms that BPIII protein is contained in Amami-Oshima P. flavoviridis venom but not in Tokunoshima P. flavoviridis venom. It is for the first time that a protein present in Amami-Oshima P. flavoviridis venom is not found in Tokunoshima P. flavoviridis venom.

Collaboration


Dive into the Takahito Chijiwa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge