Mourad Idir
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mourad Idir.
Optics Express | 2012
Peng Su; Yuhao Wang; James H. Burge; Konstantine Kaznatcheev; Mourad Idir
In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and ~200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring a spherical mirror.
Optics Letters | 2011
Julien Rizzi; Timm Weitkamp; Nicolas Guérineau; Mourad Idir; Pascal Mercère; Guillaume Druart; Grégory Vincent; Paulo da Silva; Jérôme Primot
We present in this Letter a type of quadriwave lateral shearing interferometer for x-ray phase imaging. This device is based on a phase chessboard, and we take advantage of the large spectrum of the source to produce interferograms with a propagation-invariant contrast. Such a grating has been created for hard x-ray interferometry and experimentally tested on a synchrotron beamline at Soleil.
Optics Express | 2014
Mourad Idir; Konstantine Kaznatcheev; Guillaume Dovillaire; Jerome Legrand; Rakchanok Rungsawang
We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms.
Optics Express | 2016
Lei Huang; Junpeng Xue; Bo Gao; Chris McPherson; Jacob Beverage; Mourad Idir
In this work, a model based method is applied to phase measuring deflectometry, named modal phase measuring deflectometry. The height and slopes of the surface under test are represented by mathematical models and updated by optimizing the model coefficients to minimize the discrepancy between the reprojection in ray tracing and the actual measurement. The pose of the screen relative to the camera is pre-calibrated and further optimized together with the shape coefficients of the surface under test. Simulations and experiments are conducted to demonstrate the feasibility of the proposed approach.
Optical Engineering | 2015
Run Huang; Peng Su; James H. Burge; Lei Huang; Mourad Idir
Abstract. The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1u2009u2009nm root-mean-square accuracy for the surface measurement with low-order term included.
Proceedings of SPIE | 2011
Oleg Chubar; L. E. Berman; Yong S. Chu; Andrei Fluerasu; Steve Hulbert; Mourad Idir; Konstantine Kaznatcheev; David Shapiro; Qun Shen; Jana Baltser
Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using Synchrotron Radiation Workshop (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.
Optics Express | 2013
Julien Rizzi; Pascal Mercère; Mourad Idir; P. Da Silva; Grégory Vincent; Jérôme Primot
In this paper we present some quantitative measurements of X-ray phase contrast images and noise evaluation obtained with a recent grating based X-ray phase contrast interferometer. This device is built using a single phase grating and a large broadband X-ray source. It was calibrated using a reference sample and finally used to perform measurements of a biological fossil: a mosquito trapped in amber. As phase images, noise was evaluated from the measured interferograms.
Optics Express | 2012
S. K. Rai; Mourad Idir; F. Schaefers; G. S. Lodha
In the present study we report a new multilayer combination comprised of refracting layers of niobium carbide and spacer layers of silicon as a more stable and high reflecting combination for the 10 - 20 nm wavelength region. The reflectivity of the new combination is comparable to Mo/Si conventional mirrors. Annealing experiments carried out with NbC/Si multilayer at 600°C temperature showed a ~2.5% drop in the soft x-ray reflectivity along with a marginal contraction in the multilayer period length. The multilayer structure is found stable after the heat treatment. Crystallization of the niobium carbide and silicon layers is responsible for the compaction in the period length as revealed by the grazing incidence x-ray diffraction measurements. No signature of silicide formation or any other chemical species could be detected. The multilayer structures were grown by ion beam sputtering technique using a compound target of niobium carbide. Soft x-ray reflectivity measurements performed at the Indus-1 and BESSY-II synchrotron radiation sources are found in good agreement with the simulations.
Journal of Synchrotron Radiation | 2012
K. Medjoubi; A. Thompson; J.-F. Berar; J. C. Clemens; P. Delpierre; P. Da Silva; B. Dinkespiler; R. Fourme; P. Gourhant; B. Guimaraes; S. Hustache; Mourad Idir; J.-P. Itié; P. Legrand; C. Menneglier; Pascal Mercère; F. Picca; J.-P. Samama
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140u2005eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
Review of Scientific Instruments | 1998
Gilles Cauchon; Muriel Pichet-Thomasset; R. Sauneuf; P. Dhez; Mourad Idir; Marc Ollivier; Philippe Troussel; Jean-Yves Boutin; Jean-Pierre Le Breton
X-ray imaging of plasmas with a resolution on the order of 1 μm could not be achieved with pinholes because the light flux on the detector would be too low. We tested two different types of diffractive lenses derived from the circular grating based on the Fresnel zones. Compared to pinholes, they can have an equivalent diameter of about 100 μm with a resolution of about 1 μm. The two kinds of devices tested were: (1) a transmission phase Fresnel zone lens (PFZL) associated with a multilayer mirror; (2) a reflective Bragg–Fresnel lens (BFL) which combines a multilayer mirror and the grating. The PFZL works at normal incidence by transmission; an additional mirror is used to reflect only a small bandwidth within the spectrum; the angle of reflection of the multilayer of the imaging beam on the mirror is set as to adjust the center of the useful bandwidth. The BFL works at fixed grazing incidence and we only use an off-axis part of the BFL in order to avoid the illumination of the detector by zeroth order di...