Mozes Sze
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mozes Sze.
Nature Genetics | 2011
Mourad Matmati; Peggy Jacques; Jonathan Maelfait; Eveline Verheugen; Mirjam Kool; Mozes Sze; Lies Geboes; Els Louagie; Conor Mc Guire; Lars Vereecke; Yuanyuan Chu; Louis Boon; Steven Staelens; Patrick Matthys; Bart N. Lambrecht; Marc Schmidt-Supprian; Manolis Pasparakis; Dirk Elewaut; Rudi Beyaert; Geert van Loo
A20 (TNFAIP3) is a protein that is involved in the negative feedback regulation of NF-κB signaling in response to specific proinflammatory stimuli in different cell types and has been suggested as a susceptibility gene for rheumatoid arthritis. To define the contribution of A20 to rheumatoid arthritis pathology, we generated myeloid-specific A20-deficient mice and show that specific ablation of Tnfaip3 in myeloid cells results in spontaneous development of a severe destructive polyarthritis with many features of rheumatoid arthritis. Myeloid-A20–deficient mice have high levels of inflammatory cytokines in their serum, consistent with a sustained NF-κB activation and higher TNF production by macrophages. Destructive polyarthritis in myeloid A20 knockout mice was TLR4-MyD88 and IL-6 dependent but was TNF independent. Myeloid A20 deficiency also promoted osteoclastogenesis in mice. Together, these observations indicate a critical and cell-specific function for A20 in the etiology of rheumatoid arthritis, supporting the idea of developing A20 modulatory drugs as cell-targeted therapies.
Nature | 2014
Nozomi Takahashi; Lars Vereecke; Mathieu J.M. Bertrand; Linde Duprez; Scott B. Berger; Tatyana Divert; Amanda Gonçalves; Mozes Sze; Barbara Gilbert; Stephanie Kourula; Vera Goossens; Sylvie Lefebvre; Claudia Günther; Christoph Becker; John Bertin; Peter J. Gough; Wim Declercq; Geert van Loo; Peter Vandenabeele
Receptor interacting protein kinase 1 (RIPK1) has an essential role in the signalling triggered by death receptors and pattern recognition receptors. RIPK1 is believed to function as a node driving NF-κB-mediated cell survival and inflammation as well as caspase-8 (CASP8)-dependent apoptotic or RIPK3/MLKL-dependent necroptotic cell death. The physiological relevance of this dual function has remained elusive because of the perinatal death of RIPK1 full knockout mice. To circumvent this problem, we generated RIPK1 conditional knockout mice, and show that mice lacking RIPK1 in intestinal epithelial cells (IECs) spontaneously develop severe intestinal inflammation associated with IEC apoptosis leading to early death. This early lethality was rescued by antibiotic treatment, MYD88 deficiency or tumour-necrosis factor (TNF) receptor 1 deficiency, demonstrating the importance of commensal bacteria and TNF in the IEC Ripk1 knockout phenotype. CASP8 deficiency, but not RIPK3 deficiency, rescued the inflammatory phenotype completely, indicating the indispensable role of RIPK1 in suppressing CASP8-dependent apoptosis but not RIPK3-dependent necroptosis in the intestine. RIPK1 kinase-dead knock-in mice did not exhibit any sign of inflammation, suggesting that RIPK1-mediated protection resides in its kinase-independent platform function. Depletion of RIPK1 in intestinal organoid cultures sensitized them to TNF-induced apoptosis, confirming the in vivo observations. Unexpectedly, TNF-mediated NF-κB activation remained intact in these organoids. Our results demonstrate that RIPK1 is essential for survival of IECs, ensuring epithelial homeostasis by protecting the epithelium from CASP8-mediated IEC apoptosis independently of its kinase activity and NF-κB activation.
Cell Death & Differentiation | 2011
Saskia Lippens; S Lefebvre; Barbara Gilbert; Mozes Sze; Michael Devos; Kelly Verhelst; Lars Vereecke; C Mc Guire; Christopher J. Guérin; Peter Vandenabeele; Manolis Pasparakis; M L Mikkola; Rudi Beyaert; Wim Declercq; G van Loo
The ubiquitin-editing enzyme A20 (tumor necrosis factor-α-induced protein 3) serves as a critical brake on nuclear factor κB (NF-κB) signaling. In humans, polymorphisms in or near the A20 gene are associated with several inflammatory disorders, including psoriasis. We show here that epidermis-specific A20-knockout mice (A20EKO) develop keratinocyte hyperproliferation, but no signs of skin inflammation, such as immune cell infiltration. However, A20EKO mice clearly developed ectodermal organ abnormalities, including disheveled hair, longer nails and sebocyte hyperplasia. This phenotype resembles that of mice overexpressing ectodysplasin-A1 (EDA-A1) or the ectodysplasin receptor (EDAR), suggesting that A20 negatively controls EDAR signaling. We found that A20 inhibited EDAR-induced NF-κB signaling independent from its de-ubiquitinating activity. In addition, A20 expression was induced by EDA-A1 in embryonic skin explants, in which its expression was confined to the hair placodes, known to be the site of EDAR expression. In summary, our data indicate that EDAR-induced NF-κB levels are controlled by A20, which functions as a negative feedback regulator, to assure proper skin homeostasis and epidermal appendage development.
Molecular Endocrinology | 2010
Geert van Loo; Mozes Sze; Nadia Bougarne; Jelle Praet; Conor Mc Guire; Andrea Ullrich; Guy Haegeman; Marco Prinz; Rudi Beyaert; Karolien De Bosscher
Compound A (CpdA), a plant-derived phenyl aziridine precursor, was recently characterized as a fully dissociated nonsteroidal antiinflammatory agent, acting via activation of the glucocorticoid receptor, thereby down-modulating nuclear factor-kappaB-mediated transactivation, but not supporting glucocorticoid response element-driven gene expression. The present study demonstrates the effectiveness of CpdA in inhibiting the disease progress in experimental autoimmune encephalomyelitis (EAE), a well-characterized animal model of multiple sclerosis. CpdA treatment of mice, both early and at the peak of the disease, markedly suppressed the clinical symptoms of EAE induced by myelin oligodendrocyte glycoprotein peptide immunization. Attenuation of the clinical symptoms of EAE by CpdA was accompanied by reduced leukocyte infiltration in the spinal cord, reduced expression of inflammatory cytokines and chemokines, and reduced neuronal damage and demyelination. In vivo CpdA therapy suppressed the encephalogenicity of myelin oligodendrocyte glycoprotein peptide-specific T cells. Moreover, CpdA was able to inhibit TNF- and lipopolysaccharide-induced nuclear factor-kappaB activation in primary microglial cells in vitro, in a differential mechanistic manner as compared with dexamethasone. Finally, in EAE mice the therapeutic effect of CpdA, in contrast to that of dexamethasone, occurred in the absence of hyperinsulinemia and in the absence of a suppressive effect on the hypothalamic-pituitary-adrenal axis. Based on these results, we propose CpdA as a compound with promising antiinflammatory characteristics useful for therapeutic intervention in multiple sclerosis and other neuroinflammatory diseases.
PLOS Pathogens | 2012
Jonathan Maelfait; Kenny Roose; Pieter Bogaert; Mozes Sze; Xavier Saelens; Manolis Pasparakis; Isabelle Carpentier; Geert van Loo; Rudi Beyaert
The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV) produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.
Journal of Immunology | 2010
Conor Mc Guire; Thomas Volckaert; Uta Wolke; Mozes Sze; Riet De Rycke; Ari Waisman; Marco Prinz; Rudi Beyaert; Manolis Pasparakis; Geert van Loo
Apoptosis of oligodendrocytes (ODCs), the myelin-producing glial cells in the CNS, plays a central role in demyelinating diseases such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To investigate the mechanism behind ODC apoptosis in EAE, we made use of conditional knockout mice lacking the adaptor protein FADD specifically in ODCs (FADDODC-KO). FADD mediates apoptosis by coupling death receptors with downstream caspase activation. In line with this, ODCs from FADDODC-KO mice were completely resistant to death receptor-induced apoptosis in vitro. In the EAE model, FADDODC-KO mice followed an ameliorated clinical disease course in comparison with control littermates. Lymphocyte and macrophage infiltration into the spinal cord parenchyma was significantly reduced, as was the extent of demyelination and proinflammatory gene expression. Collectively, our data show that FADD is critical for ODC apoptosis and the development of autoimmune demyelinating disease.
Nature Communications | 2014
Lars Vereecke; Sara Vieira-Silva; Thomas Billiet; Johan H. van Es; Conor Mc Guire; Karolina Slowicka; Mozes Sze; Maaike van den Born; Gert De Hertogh; Hans Clevers; Jeroen Raes; Paul Rutgeerts; Severine Vermeire; Rudi Beyaert; Geert van Loo
The transcription factor NF-κB is indispensable for intestinal immune homeostasis, but contributes to chronic inflammation and inflammatory bowel disease (IBD). A20, an inhibitor of both NF-κB and apoptotic signalling, was identified as a susceptibility gene for multiple inflammatory diseases, including IBD. Despite absence of spontaneous intestinal inflammation in intestinal epithelial cell (IEC) specific A20 knockout mice, we found additional myeloid-specific A20 deletion to synergistically drive intestinal pathology through cell-specific mechanisms. A20 ensures intestinal barrier stability by preventing cytokine-induced IEC apoptosis, while A20 prevents excessive cytokine production in myeloid cells. Combining IEC and myeloid A20 deletion induces ileitis and severe colitis, characterized by IEC apoptosis, Paneth and goblet cell loss, epithelial hyperproliferation and intestinal microbiota dysbiosis. Continuous epithelial cell death and regeneration in an inflammatory environment sensitizes cells for neoplastic transformation and the development of colorectal tumours in aged mice.
European Journal of Immunology | 2016
Karolina Slowicka; Lars Vereecke; Conor Mc Guire; Mozes Sze; Jonathan Maelfait; Annasaheb Kolpe; Xavier Saelens; Rudi Beyaert; Geert van Loo
Optineurin (OPTN) is an evolutionary conserved and ubiquitously expressed ubiquitin‐binding protein that has been implicated in glaucoma, Paget bone disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. From in vitro studies, OPTN was shown to suppress TNF‐induced NF‐κB signaling and virus‐induced IRF signaling, and was identified as an autophagy receptor required for the clearance of cytosolic Salmonella upon infection. To assess the in vivo functions of OPTN in inflammation and infection, we generated OPTN‐deficient mice. OPTN knockout mice are born with normal Mendelian distribution and develop normally without any signs of spontaneous organ abnormality or inflammation. However, no differences in NF‐κB activation could be observed in OPTN knockout mice or fibroblasts derived from these mice upon TNF or LPS treatment. Primary bone marrow‐derived macrophages from OPTN‐deficient mice had slightly impaired IRF signaling and reduced IFN type I production in response to LPS or poly(I,C). Finally, OPTN‐deficient mice were more susceptible to infection with Salmonella, confirming in vivo the importance of OPTN in bacterial clearance.
Cell Death and Disease | 2016
Leen Catrysse; M Farhang Ghahremani; Lars Vereecke; Sameh A. Youssef; C Mc Guire; Mozes Sze; Achim Weber; Mathias Heikenwalder; A. de Bruin; Rudi Beyaert; G van Loo
An important regulator of inflammatory signalling is the ubiquitin-editing protein A20 that acts as a break on nuclear factor-κB (NF-κB) activation, but also exerts important cytoprotective functions. A20 knockout mice are cachectic and die prematurely due to excessive multi-organ inflammation. To establish the importance of A20 in liver homeostasis and pathology, we developed a novel mouse line lacking A20 specifically in liver parenchymal cells. These mice spontaneously develop chronic liver inflammation but no fibrosis or hepatocellular carcinomas, illustrating an important role for A20 in normal liver tissue homeostasis. Hepatocyte-specific A20 knockout mice show sustained NF-κB-dependent gene expression in the liver upon tumor necrosis factor (TNF) or lipopolysaccharide injection, as well as hepatocyte apoptosis and lethality upon challenge with sublethal doses of TNF, demonstrating an essential role for A20 in the protection of mice against acute liver failure. Finally, chronic liver inflammation and enhanced hepatocyte apoptosis in hepatocyte-specific A20 knockout mice was associated with increased susceptibility to chemically or high fat-diet-induced hepatocellular carcinoma development. Together, these studies establish A20 as a crucial hepatoprotective factor.
PLOS Pathogens | 2016
Jonathan Maelfait; Kenny Roose; Lars Vereecke; Conor Mc Guire; Mozes Sze; Martijn J. Schuijs; Monique Willart; Lorena Itatí Ibañez; Hamida Hammad; Bart N. Lambrecht; Rudi Beyaert; Xavier Saelens; Geert van Loo
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection.