Mridul Mukherji
University of Missouri–Kansas City
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mridul Mukherji.
Cell | 2001
Andrew C.R. Epstein; Jonathan M. Gleadle; Luke A. McNeill; Kirsty S. Hewitson; O'Rourke Jf; David R. Mole; Mridul Mukherji; Eric Metzen; Michael I. Wilson; Anu Dhanda; Ya-Min Tian; Norma Masson; Donald L. Hamilton; Panu Jaakkola; Robert Barstead; Jonathan Hodgkin; Patrick H. Maxwell; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe
HIF is a transcriptional complex that plays a central role in mammalian oxygen homeostasis. Recent studies have defined posttranslational modification by prolyl hydroxylation as a key regulatory event that targets HIF-alpha subunits for proteasomal destruction via the von Hippel-Lindau ubiquitylation complex. Here, we define a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans, and use a genetic approach to identify EGL-9 as a dioxygenase that regulates HIF by prolyl hydroxylation. In mammalian cells, we show that the HIF-prolyl hydroxylases are represented by a series of isoforms bearing a conserved 2-histidine-1-carboxylate iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Mridul Mukherji; Russell Bell; Lubica Supekova; Yan Wang; Anthony P. Orth; Serge Batalov; Loren Miraglia; Dieter Huesken; Joerg Lange; Chris Martin; Sudhir Sahasrabudhe; Mischa Reinhardt; Francois Natt; Jonathan Hall; Craig Mickanin; Mark Labow; Sumit K. Chanda; Charles Y. Cho; Peter G. Schultz
Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of >2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate G1-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G2/M phase transition. Moreover, 15 genes that are integral to TNF/NF-κB signaling were found to regulate G2/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.
Progress in Lipid Research | 2003
Mridul Mukherji; Christopher J. Schofield; Anthony S. Wierzbicki; Gerbert A. Jansen; Matthew D. Lloyd
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Chemistry & Biology | 2002
Mridul Mukherji; Nadia J. Kershaw; Christopher J. Schofield; Anthony S. Wierzbicki; Matthew D. Lloyd
Since it possesses a 3-methyl group, phytanic acid is degraded by a peroxisomal alpha-oxidation pathway, the first step of which is catalyzed by phytanoyl-CoA 2-hydroxylase (PAHX). Mutations in human PAHX cause phytanic acid accumulations leading to Adult Refsums Disease (ARD), which is also observed in a sterol carrier protein 2 (SCP-2)-deficient mouse model. Phytanoyl-CoA is efficiently 2-hydroxylated by PAHX in vitro in the presence of mature SCP-2. Other straight-chain fatty acyl-CoA esters were also 2-hydroxylated and the products isolated and characterized. Use of SCP-2 increases discrimination between straight-chain (e.g., hexadecanoyl-CoA) and branched-chain (e.g., phytanoyl-CoA) substrates by PAHX. The results explain the phytanic acid accumulation in the SCP-2-deficient mouse model and suggest that some of the common symptoms of ARD and other peroxisomal diseases may arise in part due to defects in SCP-2 function caused by increased phytanic acid levels.
Biochemical and Biophysical Research Communications | 2009
V.K. Chaithanya Ponnaluri; Divya Teja Vavilala; Sandeep Putty; William G. Gutheil; Mridul Mukherji
Recent studies have shown that some Jumonji domain containing proteins demethylate tri- and dimethylated histone lysines by catalyzing a dioxygenase reaction. Here we report the substrate specificity of Jumonji domain-2 family histone demethylases (JMJD2A-C). A candidate substrate-based approach demonstrated that in addition to its known substrate, trimethylated histone H3-lysine-9, JMJD2A-C demethylate trimethylated lysine containing peptides from WIZ, CDYL1, CSB and G9a proteins, all constituents of transcription repression complexes. Our results are consistent with lax substrate specificities observed for the iron (II), 2-oxoglutarate-dependent dioxygenases, and shed new light on signaling pathways regulated by Jumonji domain-2 family histone demethylases during epigenetic transcriptional regulation.
Biochemical and Biophysical Research Communications | 2013
V.K. Chaithanya Ponnaluri; Jaroslaw P. Maciejewski; Mridul Mukherji
Methylation of DNA at the carbon-5 position of cytosine plays crucial roles in the epigenetic transcriptional silencing during metazoan development. Recent identification of Ten-Eleven Translocation (TET)-family demethylases have added a new dimension to dynamic regulation of 5-methylcytosine (5mC), and thus, inheritable and somatic gene silencing. The interest in hematology was particularly stimulated by the recent discovery of TET2 mutations in myeloid malignancies which were proven to be leukemogenic in murine knockout models. The TET-family enzymes are Fe(II), 2-oxoglutarate-dependent oxygenases and catalyze demethylation of 5mC by iterative oxidation reactions. In the last decade results from numerous studies have established a key role for these enzymes in epigenetic transcriptional regulation in eukaryotes primarily by hydroxylation reactions. The TET catalyzed hydroxylation and dehydration reactions in the mammalian system exemplify the diversity of oxidation reactions catalyzed by Fe(II), 2-oxoglutarate-dependent oxygenases, and suggest an existence of other types of oxidation reactions catalyzed by these enzymes in the eukaryotes, which are so far only documented in prokaryotes. Here, we review the TET-mediated 5mC oxidation in light of the putative reaction mechanism of Fe(II), 2-oxoglutarate-dependent oxygenases.
Biochemical and Biophysical Research Communications | 2011
V.K. Chaithanya Ponnaluri; Ramya Krishna Vadlapatla; Divya Teja Vavilala; Dhananjay Pal; Ashim K. Mitra; Mridul Mukherji
Hypoxia inducible factor (HIF) plays a critical role in cellular adaptation to hypoxia by regulating the expression of essential genes. Pathological activation of this pathway leads to the expression of pro-angiogenic factors during the neovascularization in cancer and retinal diseases. Little is known about the epigenetic regulations during HIF-mediated transcription and activation of pro-angiogenic genes in oxygen-dependent retinal diseases. Here, we show that hypoxia induces the expression of a number of histone lysine demethylases (KDMs) in retinal pigment epithelial cells. Moreover, we show that the expression of pro-angiogenic genes (ADM, GDF15, HMOX1, SERPE1 and SERPB8) is dependent on KDMs under hypoxic conditions. Further, treating the cells with a general KDM inhibitor blocks the expression of these pro-angiogenic genes. Results from these studies identify a new layer of epigenetic transcription regulation under hypoxic conditions and suggest that specific inhibitors of KDMs such as JMJD1A can be a new therapeutic approach to treat diseases caused by the hypoxia induced neovascularization in cancer and retinal diseases.
Bioorganic & Medicinal Chemistry Letters | 2001
Nadia J. Kershaw; Mridul Mukherji; Colin H. MacKinnon; Timothy D. W. Claridge; Barbara Odell; Anthony S. Wierzbicki; Matthew D. Lloyd; Christopher J. Schofield
Phytanoyl-CoA 2-hydroxylase (PAHX), an iron(II) and 2-oxoglutarate-dependent oxygenase, catalyses an essential step in the mammalian metabolism of beta-methylated fatty acids. Phytanoyl-CoA was synthesised and used to develop in vitro assays for PAHX. The product of the reaction was confirmed as 2-hydroxyphytanoyl-CoA by NMR and mass spectrometric analyses. In accord with in vivo analyses, hydroxylation of both 3R and 3S epimers of the substrate was catalysed by PAHX. Both pro- and mature- forms of PAHX were fully active.
Chemical Communications | 2001
Mridul Mukherji; Nadia J. Kershaw; Colin H. MacKinnon; Ian J. Clifton; Anthony S. Wierzbicki; Christopher J. Schofield; Matthew D. Lloyd
The in vitro catalytic activity of two clinically observed mutants of phytanoyl-CoA 2-hydroxylase, an iron(II)/2-oxoglutarate-dependent oxygenase causing Refsum’s Disease, was partially rescued by the use of alternatives to the natural cosubstrate, 2-oxoglutarate; this is the first demonstration of ‘chemical co-substrate rescue’ of mutations to an enzyme causing human disease.
Biochemical and Biophysical Research Communications | 2012
Divya Teja Vavilala; V.K. Chaithanya Ponnaluri; Ramya Krishna Vadlapatla; Dhananjay Pal; Ashim K. Mitra; Mridul Mukherji
Hypoxia-inducible-factor (HIF)-mediated expression of pro-angiogenic genes under hypoxic conditions is the fundamental cause of pathological neovascularization in retinal ischemic diseases and cancers. Recent studies have shown that histone lysine demethylases (KDMs) play a key role in the amplification of HIF signaling and expression of pro-angiogenic genes. Thus, the inhibitors of the HIF pathway or KDMs can have profound therapeutic value for diseases caused by pathological neovascularization. Here, we show that hypoxia-mediated expression of KDMs is a conserved process across multiple cell lines. Moreover, we report that honokiol, a biphenolic phytochemical extracted from Magnolia genus which has been used for thousands of years in the traditional Japanese and Chinese medicine, is a potent inhibitor of the HIF pathway as well as hypoxia-induced expression of KDMs in a number of cancer and retinal pigment epithelial cell lines. Further, treating the cells with honokiol leads to inhibition of KDM-mediated induction of pro-angiogenic genes (adrenomedullin and growth differentiation factor 15) under hypoxic conditions. Our results provide an evidence-based scientific explanation for therapeutic benefits observed with honokiol and warrant its further clinical evaluation for the treatment of pathological neovascularization in retinal ischemic diseases and cancers.