Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where V.K. Chaithanya Ponnaluri is active.

Publication


Featured researches published by V.K. Chaithanya Ponnaluri.


Biochemical and Biophysical Research Communications | 2009

Identification of non-histone substrates for JMJD2A-C histone demethylases.

V.K. Chaithanya Ponnaluri; Divya Teja Vavilala; Sandeep Putty; William G. Gutheil; Mridul Mukherji

Recent studies have shown that some Jumonji domain containing proteins demethylate tri- and dimethylated histone lysines by catalyzing a dioxygenase reaction. Here we report the substrate specificity of Jumonji domain-2 family histone demethylases (JMJD2A-C). A candidate substrate-based approach demonstrated that in addition to its known substrate, trimethylated histone H3-lysine-9, JMJD2A-C demethylate trimethylated lysine containing peptides from WIZ, CDYL1, CSB and G9a proteins, all constituents of transcription repression complexes. Our results are consistent with lax substrate specificities observed for the iron (II), 2-oxoglutarate-dependent dioxygenases, and shed new light on signaling pathways regulated by Jumonji domain-2 family histone demethylases during epigenetic transcriptional regulation.


Biochemical and Biophysical Research Communications | 2013

A mechanistic overview of TET-mediated 5-methylcytosine oxidation

V.K. Chaithanya Ponnaluri; Jaroslaw P. Maciejewski; Mridul Mukherji

Methylation of DNA at the carbon-5 position of cytosine plays crucial roles in the epigenetic transcriptional silencing during metazoan development. Recent identification of Ten-Eleven Translocation (TET)-family demethylases have added a new dimension to dynamic regulation of 5-methylcytosine (5mC), and thus, inheritable and somatic gene silencing. The interest in hematology was particularly stimulated by the recent discovery of TET2 mutations in myeloid malignancies which were proven to be leukemogenic in murine knockout models. The TET-family enzymes are Fe(II), 2-oxoglutarate-dependent oxygenases and catalyze demethylation of 5mC by iterative oxidation reactions. In the last decade results from numerous studies have established a key role for these enzymes in epigenetic transcriptional regulation in eukaryotes primarily by hydroxylation reactions. The TET catalyzed hydroxylation and dehydration reactions in the mammalian system exemplify the diversity of oxidation reactions catalyzed by Fe(II), 2-oxoglutarate-dependent oxygenases, and suggest an existence of other types of oxidation reactions catalyzed by these enzymes in the eukaryotes, which are so far only documented in prokaryotes. Here, we review the TET-mediated 5mC oxidation in light of the putative reaction mechanism of Fe(II), 2-oxoglutarate-dependent oxygenases.


Biochemical and Biophysical Research Communications | 2011

Hypoxia induced expression of histone lysine demethylases: Implications in oxygen-dependent retinal neovascular diseases

V.K. Chaithanya Ponnaluri; Ramya Krishna Vadlapatla; Divya Teja Vavilala; Dhananjay Pal; Ashim K. Mitra; Mridul Mukherji

Hypoxia inducible factor (HIF) plays a critical role in cellular adaptation to hypoxia by regulating the expression of essential genes. Pathological activation of this pathway leads to the expression of pro-angiogenic factors during the neovascularization in cancer and retinal diseases. Little is known about the epigenetic regulations during HIF-mediated transcription and activation of pro-angiogenic genes in oxygen-dependent retinal diseases. Here, we show that hypoxia induces the expression of a number of histone lysine demethylases (KDMs) in retinal pigment epithelial cells. Moreover, we show that the expression of pro-angiogenic genes (ADM, GDF15, HMOX1, SERPE1 and SERPB8) is dependent on KDMs under hypoxic conditions. Further, treating the cells with a general KDM inhibitor blocks the expression of these pro-angiogenic genes. Results from these studies identify a new layer of epigenetic transcription regulation under hypoxic conditions and suggest that specific inhibitors of KDMs such as JMJD1A can be a new therapeutic approach to treat diseases caused by the hypoxia induced neovascularization in cancer and retinal diseases.


Biochemical and Biophysical Research Communications | 2012

Honokiol inhibits HIF pathway and hypoxia-induced expression of histone lysine demethylases.

Divya Teja Vavilala; V.K. Chaithanya Ponnaluri; Ramya Krishna Vadlapatla; Dhananjay Pal; Ashim K. Mitra; Mridul Mukherji

Hypoxia-inducible-factor (HIF)-mediated expression of pro-angiogenic genes under hypoxic conditions is the fundamental cause of pathological neovascularization in retinal ischemic diseases and cancers. Recent studies have shown that histone lysine demethylases (KDMs) play a key role in the amplification of HIF signaling and expression of pro-angiogenic genes. Thus, the inhibitors of the HIF pathway or KDMs can have profound therapeutic value for diseases caused by pathological neovascularization. Here, we show that hypoxia-mediated expression of KDMs is a conserved process across multiple cell lines. Moreover, we report that honokiol, a biphenolic phytochemical extracted from Magnolia genus which has been used for thousands of years in the traditional Japanese and Chinese medicine, is a potent inhibitor of the HIF pathway as well as hypoxia-induced expression of KDMs in a number of cancer and retinal pigment epithelial cell lines. Further, treating the cells with honokiol leads to inhibition of KDM-mediated induction of pro-angiogenic genes (adrenomedullin and growth differentiation factor 15) under hypoxic conditions. Our results provide an evidence-based scientific explanation for therapeutic benefits observed with honokiol and warrant its further clinical evaluation for the treatment of pathological neovascularization in retinal ischemic diseases and cancers.


Biochemical and Biophysical Research Communications | 2013

Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

Divya Teja Vavilala; Bliss E. O’Bryhim; V.K. Chaithanya Ponnaluri; R. Sid White; Jeff Radel; R.C. Andrew Symons; Mridul Mukherji

Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.


Biochemical and Biophysical Research Communications | 2011

Studies on substrate specificity of Jmjd2a-c histone demethylases

V.K. Chaithanya Ponnaluri; Divya Teja Vavilala; Mridul Mukherji

Jumonji domain containing iron (II), 2-oxoglutarate (2OG)-dependent dioxygenases from Jmjd2 family demethylate trimethylated histone3-lysine 9 (H3-K9me3), and also H3-K9me2 and H3-K36me3, albeit at lower rates. Recently, we have identified the first non-histone substrates of JmjD2 demethylases. Here, we studied the substrate specificity of Jmjd2a-c demethylases using site-directed mutagenesis and novel non-histone substrates. We identified preference of Arg at -1 position and a smaller amino acid at -2 position using both singly and doubly mutated peptide substrates by Jmjd2a-c demethylases. Our results also identified similarities in substrate selectivity by H3-K9 methyltransferase, G9a and Jmjd2 demethylases despite their distinct reaction mechanisms.


International Journal of Pharmaceutics | 2013

Molecular expression and functional activity of efflux and influx transporters in hypoxia induced retinal pigment epithelial cells.

Ramya Krishna Vadlapatla; Aswani Dutt Vadlapudi; V.K. Chaithanya Ponnaluri; Dhananjay Pal; Mridul Mukherji; Ashim K. Mitra

A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs.


Antimicrobial Agents and Chemotherapy | 2011

Microtiter Plate-Based Assay for Inhibitors of Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus aureus

Sudheer Bobba; V.K. Chaithanya Ponnaluri; Mridul Mukherji; William G. Gutheil

ABSTRACT Penicillin-binding protein 2a (PBP2a), the molecular determinant for high-level β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA), is intrinsically resistant to most β-lactam antibiotics. The development and characterization of new inhibitors targeting PBP2a would benefit from an effective and convenient assay for inhibitor binding. This study was directed toward the development of a fluorescently detected β-lactam binding assay for PBP2a from MRSA. Biotinylated ampicillin and biotinylated cephalexin were tested as tagging reagents for fluorescence detection by using a streptavidin-horseradish peroxidase conjugate. Both bound surprisingly well to PBP2a, with binding constants of 1.6 ± 0.4 μM and 13.6 ± 0.8 μM, respectively. Two forms of the assay were developed, a one-step direct competition form of the assay and a two-step indirect competition form of the assay, and both forms of the assay gave comparable results. This assay was then used to characterize PBP2a binding to ceftobiprole, which gave results consistent with previous studies of ceftobiprole-PBP2a binding. This assay was also demonstrated for screening for PBP2a inhibitors by screening a set of 13 randomly selected β-lactams for PBP2a inhibition at 750 μM. Meropenem was observed to give substantial inhibition in this screen, and a follow-up titration experiment determined its apparent Ki to be 480 ± 70 μM. The availability of convenient and sensitive microtiter-plate based assays for the screening and characterization of PBP2a inhibitors is expected to facilitate the discovery and development of new PBP2a inhibitors for use in combating the serious public health problem posed by MRSA.


PLOS ONE | 2014

Evaluation of Anti-HIF and Anti-Angiogenic Properties of Honokiol for the Treatment of Ocular Neovascular Diseases

Divya Teja Vavilala; V.K. Chaithanya Ponnaluri; Debolina Kanjilal; Mridul Mukherji

Pathological activation of the hypoxia-inducible-factor (HIF) pathway leading to expression of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF), is the fundamental cause of neovascularization in ocular ischemic diseases and cancers. We have shown that pure honokiol inhibits the HIF pathway and hypoxia-mediated expression of pro-angiogenic genes in a number of cancer and retinal pigment epithelial (RPE) cell lines. The crude extracts, containing honokiol, from Magnolia plants have been used for thousands of years in the traditional oriental medicine for a number of health benefits. We have recently demonstrated that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen induced retinopathy mouse model significantly reduced retinal neovascularization at P17. Here, we evaluate the mechanism of HIF inhibition by honokiol in RPE cells. Using chromatin immunoprecipitation experiments, we demonstrate that honokiol inhibits binding of HIF to hypoxia-response elements present on VEGF promoter. We further show using a number of in vitro angiogenesis assays that, in addition to anti-HIF effect, honokiol manifests potent anti-angiogenic effect on human retinal micro vascular endothelial cells. Our results suggest that honokiol possesses potent anti-HIF and anti-angiogenic properties. These properties of honokiol make it an ideal therapeutic agent for the treatment of ocular neovascular diseases and solid tumors.


Toxicology reports | 2014

Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics

Divya Teja Vavilala; Sujatha Reddy; Sachchidanand; S. Prakash; V.K. Chaithanya Ponnaluri; Arvind Kumar; Mridul Mukherji

Background Epigenetic modifications, particularly DNA methylation and posttranslational histone modifications regulate heritable changes in transcription without changes in the DNA sequence. Despite a number of studies showing clear links between environmental factors and DNA methylation, little is known about the effect of environmental factors on the recently identified histone lysine methylation. Since their identification numerous studies have establish critical role played by these enzymes in mammalian development. Objectives Identification of the Jumonji (Jmj) domain containing histone lysine demethylase have added a new dimension to epigenetic control of gene expression by dynamic regulation of histone methylation marks. The objective of our study was to evaluate the effect of prohexadione and trinexapac, widely used plant growth regulators of the acylcyclohexanediones class, on the enzymatic activity of histone lysine demethylases and histone modifications during the neural stem/progenitor cell differentiation. Methods Here we show that prohexadione, but not trinexapac, directly inhibits non-heme iron (II), 2-oxoglutarate-dependent histone lysine demethylase such as Jmjd2a. We used molecular modeling to show binding of prohexadione to Jmjd2a. We also performed in vitro demethylation assays to show the inhibitory effect of prohexadione on Jmjd2a. Further we tested this molecule in cell culture model of mouse hippocampal neural stem/progenitor cells to demonstrate its effect toward neuronal proliferation and differentiation. Results Molecular modeling studies suggest that prohexadione binds to the 2-oxoglutarate binding site of Jmjd2a demethylase. Treatment of primary neural stem/progenitor cells with prohexadione showed a concentration dependent reduction in their proliferation. Further, the prohexadione treated neurospheres were induced toward neurogenic lineage upon differentiation. Conclusions Our results describe an important chemico-biological interaction of prohexadione, in light of critical roles played by histone lysine demethylases in human health and diseases.

Collaboration


Dive into the V.K. Chaithanya Ponnaluri's collaboration.

Top Co-Authors

Avatar

Mridul Mukherji

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Divya Teja Vavilala

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Ramya Krishna Vadlapatla

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

S. Prakash

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Ashim K. Mitra

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Dhananjay Pal

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

William G. Gutheil

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Debolina Kanjilal

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Aswani Dutt Vadlapudi

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge