Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mu-Yi Hua is active.

Publication


Featured researches published by Mu-Yi Hua.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain

Hao-Li Liu; Mu-Yi Hua; Hung-Wei Yang; Chiung-Yin Huang; Po-Chun Chu; Jia-Shin Wu; I-Chou Tseng; Jiun-Jie Wang; Tzu-Chen Yen; Pin-Yuan Chen; Kuo-Chen Wei

The superparamagnetic properties of magnetic nanoparticles (MNPs) allow them to be guided by an externally positioned magnet and also provide contrast for MRI. However, their therapeutic use in treating CNS pathologies in vivo is limited by insufficient local accumulation and retention resulting from their inability to traverse biological barriers. The combined use of focused ultrasound and magnetic targeting synergistically delivers therapeutic MNPs across the blood–brain barrier to enter the brain both passively and actively. Therapeutic MNPs were characterized and evaluated both in vitro and in vivo, and MRI was used to monitor and quantify their distribution in vivo. The technique could be used in normal brains or in those with tumors, and significantly increased the deposition of therapeutic MNPs in brains with intact or compromised blood–brain barriers. Synergistic targeting and image monitoring are powerful techniques for the delivery of macromolecular chemotherapeutic agents into the CNS under the guidance of MRI.


Radiology | 2010

Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment

Hao-Li Liu; Mu-Yi Hua; Pin-Yuan Chen; Po-Chun Chu; Chia-Hsin Pan; Hung-Wei Yang; Chiung-Yin Huang; Jiun-Jie Wang; Tzu-Chen Yen; Kuo-Chen Wei

PURPOSE To demonstrate the feasibility of using focused ultrasound to enhance delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to glioblastomas in rats with induced tumors and determine if such an approach increases treatment efficacy. MATERIALS AND METHODS All animal experiments were approved by the animal committee and adhered to the experimental animal care guidelines. A 400-kHz focused ultrasound generator was used to transcranially disrupt the blood-brain barrier (BBB) in rat brains by delivering burst-tone ultrasound energy in the presence of microbubbles. The process was monitored in vivo by using magnetic resonance (MR) imaging. Cultured C6 glioma cells implanted in Sprague-Dawley rats were used as the tumor model. BCNU (13.5 mg/kg) was administered intravenously and its concentration in brains was quantified by using high-performance liquid chromatography. MR imaging was used to evaluate the effect of treatments longitudinally, including analysis of tumor progression and animal survival, and brain tissues were histologically examined. Methods including the two-tailed unpaired t test and the Mantel-Cox test were used for statistical analyses, with a significance level of .05. RESULTS Focused ultrasound significantly enhanced the penetration of BCNU through the BBB in normal (by 340%) and tumor-implanted (by 202%) brains without causing hemorrhaging. Treatment of tumor-implanted rats with focused ultrasound alone had no beneficial effect on tumor progression or on animal survival up to 60 days. Administration of BCNU only transiently controlled tumor progression; nevertheless, relative to untreated controls, animal survival was improved by treatment with BCNU alone (increase in median survival time [IST(median)], 15.7%, P = .023). Treatment with focused ultrasound before BCNU administration controlled tumor progression (day 31: 0.05 cm(3) + or - 0.1 [standard deviation] vs 0.28 cm(3) + or - 0.1) and improved animal survival relative to untreated controls (IST(median), 85.9%, P = .0015). CONCLUSION This study demonstrates a means of increasing localized chemotherapeutic drug delivery for brain tumor treatment and strongly supports the feasibility of this treatment in a clinical setting.


Biomaterials | 2009

Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles.

Yunn-Hwa Ma; Siao-Yun Wu; Tony Wu; Yeu-Jhy Chang; Mu-Yi Hua; Jyh-Ping Chen

We investigated the feasibility and efficacy of target thrombolysis with recombinant tissue plasminogen activator (rtPA) covalently bound to magnetic nanoparticle (MNP) and retained to the target site in vivo by an external magnet. Polyacrylic acid-coated magnetite (PAA-MNP, 246 nm) was synthesized and characterized; rtPA was immobilized to PAA-MNP through carbodiimide-mediated amide bond formation. The enzyme activities of the bound rtPA, as measured by a chromogenic substrate assay and (125)I-fibrinolysis assay, were 87+/-1% and 86+/-3% of that of free rtPA. Under guidance with the magnet moving back and forth along the iliac artery, the thrombolytic activity of PAA-MNP-rtPA with rtPA equivalent to 0.2mg/kg was determined by flowmetry in a rat embolic model. Intra-arterial administration of PAA-MNP-rtPA restored the iliac blood flow within 75 min to 82% of that before the clot lodging, whereas equivalent amount of PAA-MNP or free rtPA exerted no improvement on hemodynamics. At the end of 2-h period, PAA-MNP-rtPA did not alter levels of hemoglobin, hematocrit, or blood cell count. In conclusion, immobilization of rtPA to PAA-MNP with covalent binding resulted in a stable rtPA preparation and predictable amount of rtPA around the target site under magnetic guidance; this approach may achieve reproducible and effective target thrombolysis with <20% of a regular dose of rtPA.


Biomaterials | 2011

The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas

Mu-Yi Hua; Hao-Li Liu; Hung-Wei Yang; Pin-Yuan Chen; Rung-Ywan Tsai; Chiung-Yin Huang; I-Chou Tseng; Lee-Ang Lyu; Chih-Chun Ma; Hsiang-Jun Tang; Tzu-Chen Yen; Kuo-Chen Wei

This study describes the creation and characterization of drug carriers prepared using the polymer poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) coated on Fe(3)O(4) cores to form three types of magnetic nanoparticles (MNPs); these particles were used to enhance the therapeutic capacity and improve the thermal stability of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a compound used to treat brain tumors. The average hydrodynamic diameter of the MNPs was 89.2 ± 8.5 nm and all the MNPs displayed superparamagnetic properties. A maximum effective dose of 379.34 μg BCNU could be immobilized on 1 mg of MNP-3 (bound-BCNU-3). Bound-BCNU-3 was more stable than free-BCNU when stored at 4 °C, 25 °C or 37 °C. Bound-BCNU-3 could be concentrated at targeted sites in vitro and in vivo using an externally applied magnet. When applied to brain tumors, magnetic targeting increased the concentration and retention of bound-BCNU-3. This drug delivery system promises to provide more effective tumor treatment using lower therapeutic doses and potentially reducing the side effects of chemotherapy.


Neuro-oncology | 2010

Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment

Pin-Yuan Chen; Hao-Li Liu; Mu-Yi Hua; Hung-Wei Yang; Chiung-Yin Huang; Po-Chun Chu; Lee-Ang Lyu; I-Chou Tseng; Li-Ying Feng; Hong-Chieh Tsai; Shu-Mei Chen; Yu-Jen Lu; Jiun-Jie Wang; Tzu-Chen Yen; Yunn-Hwa Ma; Tony Wu; Jyh-Ping Chen; Jih Ing Chuang; Chuen Hsueh; Kuo-Chen Wei

Malignant glioma is a common and severe primary brain tumor with a high recurrence rate and an extremely high mortality rate within 2 years of diagnosis, even when surgical, radiological, and chemotherapeutic interventions are applied. Intravenously administered drugs have limited use because of their adverse systemic effects and poor blood-brain barrier penetration. Here, we combine 2 methods to increase drug delivery to brain tumors. Focused ultrasound transiently permeabilizes the blood-brain barrier, increasing passive diffusion. Subsequent application of an external magnetic field then actively enhances localization of a chemotherapeutic agent immobilized on a novel magnetic nanoparticle. Combining these techniques significantly improved the delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea to rodent gliomas. Furthermore, the physicochemical properties of the nanoparticles allowed their delivery to be monitored by magnetic resonance imaging (MRI). The resulting suppression of tumor progression without damaging the normal regions of the brain was verified by MRI and histological examination. This noninvasive, reversible technique promises to provide a more effective and tolerable means of tumor treatment, with lower therapeutic doses and concurrent clinical monitoring.


Biomaterials | 2013

Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy

Hung-Wei Yang; Hao-Li Liu; Meng-Lin Li; I-Wen Hsi; Chih-Tai Fan; Chiung-Yin Huang; Yu-Jen Lu; Mu-Yi Hua; Hsin-Yi Chou; Jiunn-Woei Liaw; Chen-Chi M. Ma; Kuo-Chen Wei

Nanomedicine can provide a multi-functional platform for image-guided diagnosis and treatment of cancer. Although gold nanorods (GNRs) have been developed for photoacoustic (PA) imaging and near infra-red (NIR) photothermal applications, their efficiency has remained limited by low thermal stability. Here we present the synthesis, characterization, and functional evaluation of non-cytotoxic magnetic polymer-modified gold nanorods (MPGNRs), designed to act as dual magnetic resonance imaging (MRI) and PA imaging contrast agents. In addition, their high magnetization allowed MPGNRs to be actively localized and concentrated by targeting with an external magnet. Finally, MPGNRs significantly enhanced the NIR-laser-induced photothermal effect due to their increased thermal stability. MPGNRs thus provide a promising new theranostic platform for cancer diagnosis and treatment by combining dual MR/PA imaging with highly effective targeted photothermal therapy.


Biomaterials | 2010

Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer

Mu-Yi Hua; Hung-Wei Yang; Cheng-Keng Chuang; Rung-Ywan Tsai; Wen-Jauh Chen; Kun-Lung Chuang; Ying-Hsu Chang; Heng-Chang Chuang; See-Tong Pang

A nontoxic drug nanocarrier containing carboxyl groups was successfully developed by mixing magnetic nanoparticles (MNPs) of Fe(3)O(4) with the water-soluble polyaniline derivative poly[aniline-co-sodium N-(1-one-butyric acid) aniline] (SPAnNa) and doping with HCl aqueous solution to form SPAnH/MNPs shell/core. SPAnH/MNPs could be used to effectively immobilize the hydrophobic drug paclitaxel (PTX), thus enhancing the drugs thermal stability and water solubility. Up to 302.75 mug of PTX could be immobilized per mg of SPAnH/MNPs. SPAnH/MNPs-bound-PTX (bound-PTX) was more stable than free-PTX at both 25 degrees C and 37 degrees C. Furthermore, bound-PTX was more cytotoxic to human prostate carcinoma cells (PC3 and CWR22R) than free-PTX at 37 degrees C, and the inhibition of cellular growth was even more pronounced when magnetic targeting was applied to the bound-PTX. These data indicate that this magnetically targeted drug delivery system provides more effective treatment of prostate cancer cells using lower therapeutic doses and thus with potentially fewer side-effects.


Biomaterials | 2011

Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy

Mu-Yi Hua; Hung-Wei Yang; Hao-Li Liu; Rung-Ywan Tsai; See-Tong Pang; Kun-Lung Chuang; Yu-Sun Chang; Tsong-Long Hwang; Ying-Hsu Chang; Heng-Chang Chuang; Cheng-Keng Chuang

The aim of this study describes the creation of superhigh-magnetization nanocarriers (SHMNCs) comprised of a magnetic Fe(3)O(4) (SHMNPs) core and a shell of aqueous stable self-doped poly[N-(1-one-butyric acid)]aniline (SPAnH), which have a high drug loading capacity (∼27.1 wt%) of doxorubicin (DOX). The SHMNCs display superparamagnetic property with a magnetization of 89.7 emu/g greater than that of Resovist (a commercial contrast agent used for magnetic resonance imaging; 73.7 emu/g). Conjugating the anticancer drug DOX to these nanocarriers enhances the drugs thermal stability and maximizes the efficiency with which it is delivered by magnetic targeting (MT) therapy to MGH-U1 bladder cancer cells, in part by avoiding the effects of p-glycoprotein (P-gp) pumps to enhance the intracellular concentration of DOX. The high R2 relaxivity (434.7 mM(-1)s(-1)) of SHMNCs not only be a most effective MT carrier of chemotherapeutic agent but be an excellent contrast agent of MRI, allowing the assessment of the distribution and concentration of DOX in various tissues and organs. This advanced drug delivery system promises to provide more effective MT therapy and tumor treatment using lower therapeutic doses and potentially reducing the side effects of cardiotoxicity caused by DOX.


Advanced Materials | 2013

Non‐Invasive Synergistic Treatment of Brain Tumors by Targeted Chemotherapeutic Delivery and Amplified Focused Ultrasound‐Hyperthermia Using Magnetic Nanographene Oxide

Hung-Wei Yang; Mu-Yi Hua; Tsong-Long Hwang; Kun-Ju Lin; Chiung-Yin Huang; Rung-Ywan Tsai; Chen-Chi M. Ma; Po-Hung Hsu; Shiaw-Pyng Wey; Peng-Wei Hsu; Pin-Yuan Chen; Yin-Cheng Huang; Yu-Jen Lu; Tzu-Chen Yen; Li-Ying Feng; Chih-Wen Lin; Hao-Li Liu; Kuo-Chen Wei

The combination of chemo-thermal therapy is the best strategy to ablate tumors, but how to heat deep tumor tissues effectively without side-damage is a challenge. Here, a systemically delivered nanocarrier is designed with multiple advantages, including superior heat absorption, highly efficient hyperthermia, high drug capacity, specific targeting ability, and molecular imaging, to achieve both high antitumor efficacy and effective amplification of hyperthermia with minimal side effects.


Biosensors and Bioelectronics | 2013

Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection

Hung-Wei Yang; Mu-Yi Hua; Shi-Lian Chen; Rung-Ywan Tsai

We propose a new strategy to improve the enzyme stability, construction and sensitivity of a multifunctional sensor. An exfoliated graphene oxide sheet with carboxyl-long-chains (GO-CLC) was prepared in one step from primitive graphite via Friedel-Crafts acylation. Magnetic nanoparticles, glucose oxidase (GOD) and poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) were then incorporated to form an electrochemical film (SPAnH-HMGO-CLC-GOD) for the detection of hydrogen peroxide (H(2)O(2)) and glucose. The GO and Fe(3)O(4) have intrinsic hydrogen peroxide catalytic activity and the activity will be enhanced by the combination of SPAnH coating and induces an amplification of electrochemical reduction current. This response can be used as a glucose sensor by tracing the released H(2)O(2) after enzymatic reaction of bound GOD. Our sensor was linear within the range from 0.01 mM to 1mM H(2)O(2) and 0.1mM to 1.4mM glucose, with high sensitivities of 4340.6 μA mM(-1) cm(-2) and 1074.6 μA mM(-1) cm(-2), respectively. The relative standard deviations (RSD) were 5.4% for H(2)O(2) detection and 5.8% for glucose detection. The true detecting range was 0.4-40 mM for H(2)O(2) and 4-56 mM for glucose, which multiplied by 40-fold of dilution. This sensor based on the catalysis of organic SPAnH and the enzymatic activity of GOD can be used for both H(2)O(2) and glucose sensing in potential clinical, environmental and industrial applications.

Collaboration


Dive into the Mu-Yi Hua's collaboration.

Top Co-Authors

Avatar

Rung-Ywan Tsai

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuo-Chen Wei

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Chiung-Yin Huang

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Show-An Chen

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge