Muhamed-Kheir Taha
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhamed-Kheir Taha.
The Lancet | 2000
Muhamed-Kheir Taha; Mark Achtman; Jean-Michel Alonso; Brian Greenwood; Mary Ramsay; Andrew J. Fox; Steve J. Gray; Edward B. Kaczmarski
An outbreak of W135 meningococcal disease occurred in the spring of 2000 among pilgrims returning from Saudi Arabia and their contacts. Clinical isolates from England and France were examined and compared with reference strains from other countries. Characterisation of isolates by a range of typing methods showed them to be of clonal origin (ET-37) and closely related to other meningococci with an established propensity to cause disease clusters. A reappraisal of vaccination strategies for travellers is required.
Lancet Infectious Diseases | 2013
Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli
BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.
Clinical Infectious Diseases | 2007
Pascal Boisier; Pierre Nicolas; Saacou Djibo; Muhamed-Kheir Taha; Isabelle Jeanne; Halima Boubacar Maïnassara; Bernard Tenebray; Kiari Kaka Kairo; Dario Giorgini; Suzanne Chanteau
BACKGROUND In Niger, epidemic meningococcal meningitis is primarily caused by Neisseria meningitidis (Nm) serogroup A. However, since 2002, Nm serogroup W135 has been considered to be a major threat that has not yet been realized, and an unprecedented incidence of Nm serogroup X (NmX) meningitis was observed in 2006. METHODS Meningitis surveillance in Niger is performed on the basis of reporting of clinically suspected cases. Cerebrospinal fluid specimens are sent to the reference laboratory in Niamey, Niger. Culture, latex agglutination, and polymerase chain reaction are used whenever appropriate. Since 2004, after the addition of a polymerase chain reaction-based nonculture assay that was developed to genogroup isolates of NmX, polymerase chain reaction testing allows for the identification of Nm serogroup A, Nm serogroup B, Nm serogroup C, NmX, Nm serogroup Y, and Nm serogroup W135. RESULTS From January to June 2006, a total of 4185 cases of meningitis were reported, and 2905 cerebrospinal fluid specimens were laboratory tested. NmX meningitis represented 51% of 1139 confirmed cases of meningococcal meningitis, but in southwestern Niger, it represented 90%. In the agglomeration of Niamey, the reported cumulative incidence of meningitis was 73 cases per 100,000 population and the cumulative incidence of confirmed NmX meningitis was 27.5 cases per 100,000 population (74.6 cases per 100,000 population in children aged 5-9 years). NmX isolates had the same phenotype (X : NT : P1.5), and all belonged to the same sequence type (ST-181) as the NmX isolates that were circulating in Niamey in the 1990s. Nm serogroup W135 represented only 2.1% of identified meningococci. CONCLUSIONS This is, to our knowledge, the first report of such a high incidence of NmX meningitis, although an unusually high incidence of NmX meningitis was also observed in the 1990s in Niamey. The increasing incidence of NmX meningitis is worrisome, because no vaccine has been developed against this serogroup. Countries in the African meningitis belt must prepare to face this potential new challenge.
The Journal of Infectious Diseases | 2009
Ellen Murphy; Lubomira Andrew; Kwok-Leung Lee; Deborah A. Dilts; Lorna Nunez; Pamela S. Fink; Karita Ambrose; Ray Borrow; Jamie Findlow; Muhamed-Kheir Taha; Ala-Eddine Deghmane; Paula Kriz; Martin Musilek; Jitka Kalmusova; Dominique A. Caugant; Torill Alvestad; Leonard W. Mayer; Claudio T. Sacchi; Xin Wang; Diana Martin; Anne von Gottberg; Mignon du Plessis; Keith P. Klugman; Annaliesa S. Anderson; Kathrin U. Jansen; Gary W. Zlotnick; Susan K. Hoiseth
BACKGROUND Recombinant forms of Neisseria meningitidis human factor H binding protein (fHBP) are undergoing clinical trials in candidate vaccines against invasive meningococcal serogroup B disease. We report an extensive survey and phylogenetic analysis of the diversity of fhbp genes and predicted protein sequences in invasive clinical isolates obtained in the period 2000-2006. METHODS Nucleotide sequences of fhbp genes were obtained from 1837 invasive N. meningitidis serogroup B (MnB) strains from the United States, Europe, New Zealand, and South Africa. Multilocus sequence typing (MLST) analysis was performed on a subset of the strains. RESULTS Every strain contained the fhbp gene. All sequences fell into 1 of 2 subfamilies (A or B), with 60%-75% amino acid identity between subfamilies and at least 83% identity within each subfamily. One fHBP sequence may have arisen via inter-subfamily recombination. Subfamily B sequences were found in 70% of the isolates, and subfamily A sequences were found in 30%. Multiple fHBP variants were detected in each of the common MLST clonal complexes. All major MLST complexes include strains in both subfamily A and subfamily B. CONCLUSIONS The diversity of strains observed underscores the importance of studying the distribution of the vaccine antigen itself rather than relying on common epidemiological surrogates such as MLST.
Molecular Microbiology | 2002
Ala-Eddine Deghmane; Dario Giorgini; Mireille Larribe; Jean-Michel Alonso; Muhamed-Kheir Taha
The initial attachment of Neisseria meningitidis to the target cell surface appears to be largely pilus depend‐ent in capsulated bacteria. Intimate adhesion subsequently occurs to permit colonization. We recently reported that insertional inactivation of the crgA gene, which encodes a transcriptional regulator belonging to the LysR family, decreased meningococcal adhesion to epithelial cells and abolished intimate adhesion. In this report, we analyse expression of the pilE and sia genes, which are involved in the biosynthesis of pili and capsule respectively, during bacteria–host cell interactions. Western blotting, transcriptional fusion and reverse transcriptase polymerase chain reaction (RT‐PCR) analysis showed that the expression of these genes was downregulated during intimate adhesion. DNA‐binding assays, footprinting and RT‐PCR analysis indicated that this downregulation was directly mediated by the CrgA protein. The pilE and sia promoters were found to have a CrgA binding motif in common. These results strongly suggest that N. meningitidis displays an adaptive response upon cell contact. CrgA may play a central regulatory role in meningococcal adhesion, particularly in switching from initial to intimate adhesion by downregulating the bacterial surface structures that hinder this adhesion.
Journal of Clinical Microbiology | 2002
Muhamed-Kheir Taha; Isabelle Parent du Chatelet; Martin Schlumberger; Idrissa Sanou; Saacou Djibo; François de Chabalier; Jean-Michel Alonso
ABSTRACT Meningococcal infections occur as epidemics in the African meningitis belt. Neisseria meningitidis serogroup A is predominantly involved in these epidemics. We report here new data on the involvement of both serogroups A and W135 in meningitis cases in Burkina Faso and Niger at the end of the 2001 epidemic.
The Journal of Infectious Diseases | 1997
Bénédicte Pron; Muhamed-Kheir Taha; Caroline Rambaud; Jean-Christophe Fournet; Natacha Pattey; Jean-Paul Monnet; Martin Musilek; Jean-Luc Beretti; Xavier Nassif
A fatal untreated case of fulminant meningococcemia was examined to investigate the crossing of the blood-brain barrier (BBB) by Neisseria meningitidis. Microscopic examination showed bacteria in vivo adhering to the endothelium of both the choroid plexus and the meninges. Comparison of the isolates cultivated from the blood and the cerebrospinal fluid (CSF) revealed no antigenic variation of the pilin or the class 5 protein, whereas the expression of the PilC protein was greater in the CSF and the choroid plexus than in the blood. This was due to an increased activity of one of the pilC promotors. This higher expression of PilC correlated in vitro with greater adhesiveness to endothelial cells. A mutation in the single pilC locus of this strain abolished in vitro pilus-mediated adhesion to endothelial cells. These data suggest that PilC plays an important role in the crossing of the BBB, likely through pilus-mediated adhesion.
Contributions to microbiology | 2009
Sandrine Poncet; Eliane Milohanic; Alain Mazé; Jamila Nait Abdallah; Francine Moussan Désirée Aké; Mireille Larribe; Ala-Eddine Deghmane; Muhamed-Kheir Taha; Marie Dozot; Xavier De Bolle; Jean-Jacques Letesson; Josef Deutscher
Bacteria have developed several mechanisms which allow the preferred utilization of the most efficiently metabolizable carbohydrates when these organisms are exposed to a mixture of carbon sources. Interestingly, the same or similar mechanisms are used by some pathogens to control various steps of their infection process. The efficient metabolism of a carbon source might serve as signal for proper fitness. Alternatively, the presence of a specific carbon source might indicate to bacterial cells that they thrive in infection-related organs, tissues or cells and that specific virulence genes should be turned on or switched off. Frequently, virulence gene regulators are affected by changes in carbon source availability. For example, expression of the gene encoding the Streptococcus pyogenes virulence regulator Mga is controlled by the classical carbon catabolite repression (CCR) mechanism operative in Firmicutes. The activity of PrfA, the major virulence regulator in Listeria monocytogenes, seems to be controlled by the phosphorylation state of phosphotransferase system(PTS) components. In Vibrio cholerae synthesis of HapR, which regulates the expression of genes required for motility, is controlled via the Crp/cAMP CCR mechanism, whereas synthesis of Salmonella enterica HilE, which represses genes in a pathogenicity island, is regulated by the carbohydrate-responsive, PTS-controlled Mlc.
Journal of Infection | 2015
Jay Lucidarme; Dorothea M. C. Hill; Holly B. Bratcher; Steve J. Gray; Mignon du Plessis; Raymond S. W. Tsang; Julio A. Vázquez; Muhamed-Kheir Taha; Mehmet Ceyhan; Adriana M. Efron; Maria Cecília Outeiro Gorla; Jamie Findlow; Keith A. Jolley; Martin C. J. Maiden; Ray Borrow
Summary Objectives Neisseria meningitidis is a leading cause of meningitis and septicaemia. The hyperinvasive ST-11 clonal complex (cc11) caused serogroup C (MenC) outbreaks in the US military in the 1960s and UK universities in the 1990s, a global Hajj-associated serogroup W (MenW) outbreak in 2000–2001, and subsequent MenW epidemics in sub-Saharan Africa. More recently, endemic MenW disease has expanded in South Africa, South America and the UK, and MenC cases have been reported among European and North American men who have sex with men (MSM). Routine typing schemes poorly resolve cc11 so we established the population structure at genomic resolution. Methods Representatives of these episodes and other geo-temporally diverse cc11 meningococci (n = 750) were compared across 1546 core genes and visualised on phylogenetic networks. Results MenW isolates were confined to a distal portion of one of two main lineages with MenB and MenC isolates interspersed elsewhere. An expanding South American/UK MenW strain was distinct from the ‘Hajj outbreak’ strain and a closely related endemic South African strain. Recent MenC isolates from MSM in France and the UK were closely related but distinct. Conclusions High resolution ‘genomic’ multilocus sequence typing is necessary to resolve and monitor the spread of diverse cc11 lineages globally.
Clinical Infectious Diseases | 2003
Pascale Vienne; Magaly Ducos-Galand; Annie Guiyoule; René Pires; Dario Giorgini; Muhamed-Kheir Taha; Jean-Michel Alonso
The clinical presentations of meningococcal diseases other than meningitis or meningococcemia may lead to erroneous diagnosis. Although several reports have described unusual meningococcal diseases, the Neisseria meningitidis strains involved in these forms have been poorly characterized. In this study, meningococcal arthritis and pericarditis were confirmed by isolation of N. meningitidis and/or detection of meningococcal DNA in synovial or pericardial fluid, respectively, and meningococcal pneumonia was detected by isolation of N. meningitidis from blood. From 1999 through 2002, meningococcal disease was bacteriologically confirmed in 26 cases of arthritis, 6 cases of pericarditis, and 33 cases of pneumonia by the National Reference Center for the Meningococci in Paris. We found a statistically significant association between strains of serogroup W135, mostly of the clonal complex ET-37, and arthritis. Pneumonia was most frequently diagnosed in patients aged >70 years, and 54.5% of the strains belonged to serogroup W135, although these strains had heterogeneous phenotypes. Bacteremia is a key step in the pathophysiology of meningococcal disease and precedes any form of invasive infection.