Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Hong is active.

Publication


Featured researches published by Eva Hong.


Lancet Infectious Diseases | 2013

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.

Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli

BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.


Lancet Infectious Diseases | 2011

From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak

François Caron; Isabelle Parent du Châtelet; Jean-Philippe Leroy; Corinne Ruckly; Myriam Blanchard; Nicole Bohic; Nathalie Massy; Isabelle Morer; Daniel Floret; Valérie Delbos; Eva Hong; Martin Révillion; Gilles Berthelot; Ludovic Lemée; Ala-Eddine Deghmane; Jacques Benichou; D Lévy-Bruhl; Muhamed-Kheir Taha

BACKGROUND Outer-membrane-vesicle vaccines for meningococcal B outbreaks are complex and time consuming to develop. We studied the use of already available vaccine to control an outbreak caused by a genetically close strain. METHODS From 2006 to 2009, all individuals younger than 20 years living in the region of Normandy, France, in which an outbreak caused by a B:14:P1.7,16 strain occurred, were eligible to receive MenBvac, a Norwegian vaccine designed 20 years earlier against a strain sharing the same serosubtype (B:15:P1.7,16). The immunogenicity (in a randomly selected cohort of 400 children aged 1-5 years), safety, and epidemiological effect of the vaccination were assessed. FINDINGS 26,014 individuals were eligible to receive the vaccine. Shortage of vaccine production prompted start of the campaign in the highest incidence groups (1-5 years). 16,709 (64%) received a complete vaccination schedule of whom 13,589 (81%) received a 2+1 dose schedule (week 0, week 6, and month 8). At 6 weeks after the third dose, of 235 vaccinees for whom samples were available, 206 (88%) had a seroresponse, and 108 (56 %) of 193 had a seroresponse at 15 months. These results were similar to those described for tailor-made vaccines and their homologous strain. Only previously described adverse effects occurred. The incidence of B:14:P1.7,16 cases decreased significantly in the vaccine targeted population after the primary vaccination period (from 31·6 per 100,000 to 5·9 per 100,000; p=0·001). INTERPRETATION The ready-to-wear approach is reliable if epidemic and vaccine strains are genetically close. Other meningococcal B clonal outbreaks might benefit from this strategy; and previously described outer-membrane-vesicle vaccines can be effective against various strains. FUNDING French Ministry of Health.


Antimicrobial Agents and Chemotherapy | 2007

Target Gene Sequencing To Characterize the Penicillin G Susceptibility of Neisseria meningitidis

Muhamed-Kheir Taha; Julio A. Vázquez; Eva Hong; Désirée E. Bennett; Sophie Bertrand; Suzana Bukovski; Mary Cafferkey; Françoise Carion; Jens Jørgen Christensen; Mathew Diggle; Giles Edwards; Rocío Enríquez; Cecilia Fazio; Matthias Frosch; Sigrid Heuberger; Steen Hoffmann; Keith A. Jolley; Marcin Kadłubowski; Amel Kechrid; Konstantinos Kesanopoulos; Paula Kriz; Lotte Lambertsen; Ileanna Levenet; Martin Musilek; Metka Paragi; Aouatef Saguer; Anna Skoczyńska; Paola Stefanelli; Sara Thulin; Georgina Tzanakaki

ABSTRACT Clinical isolates of Neisseria meningitidis with reduced susceptibility to penicillin G (intermediate isolates, PenI) harbor alterations in the penA gene encoding the penicillin binding protein 2 (PBP2). A 402-bp DNA fragment in the 3′ half of penA was sequenced from a collection of 1,670 meningococcal clinical isolates from 22 countries that spanned 60 years. Phenotyping, genotyping, and the determination of MICs of penicillin G were also performed. A total of 139 different penA alleles were detected with 38 alleles that were highly related, clustered together in maximum-likelihood analysis and corresponded to the penicillin G-susceptible isolates. The remaining 101 penA alleles were highly diverse, corresponded to different genotypes or phenotypes, and accounted for 38% of isolates, but no clonal expansion was detected. Analysis of the altered alleles that were represented by at least five isolates showed high correlation with the PenI phenotype. The deduced amino acid sequence of the corresponding PBP2 comprised five amino acid residues that were always altered. This correlation was not complete for rare alleles, suggesting that other mechanisms may also be involved in conferring reduced susceptibility to penicillin. Evidence of mosaic structures through events of interspecies recombination was also detected in altered alleles. A new website was created based on the data from this work (http://neisseria.org/nm/typing/penA ). These data argue for the use of penA sequencing to identify isolates with reduced susceptibility to penicillin G and as a tool to improve typing of meningococcal isolates, as well as to analyze DNA exchange among Neisseria species.


Vaccine | 2013

Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa

Eva Hong; Marzia Monica Giuliani; Ala-Eddine Deghmane; Maurizio Comanducci; Brunella Brunelli; Peter M. Dull; Mariagrazia Pizza; Muhamed-Kheir Taha

A new vaccine, 4CMenB, is composed of surface proteins of Neisseria meningitidis and is aimed to target serogroup B (MenB) isolates. The vaccine components are present in meningococcal isolates of other serogroups allowing potential use against meningococcal isolates belonging to non-B serogroups. Isolates of serogroup X (MenX) have been emerged in countries of the African meningitis belt. 4CMenB may offer a vaccine strategy against these isolates as there is no available capsule-based vaccine against MenX. We used the Meningococcal Antigen Typing System (MATS) to determine presence, diversity and levels of expression of 4CMenB antigens among 9 MenX isolates from several African countries in order to estimate the potential coverage of MenX by the 4CMenB vaccine. We performed bactericidal assays against these isolates, using pooled sera from 4CMenB-vaccinated infants, adolescents and adults. The African MenX isolates belonged to the same genotype but showed variation in the vaccine antigens. MATS data and bactericidal assays suggest coverage of the 9 African MenX isolates by 4CMenB but not of two unrelated MenX isolates from France. 4CMenB vaccine can be considered for further investigation to control MenX outbreaks in Africa.


Infection and Immunity | 2007

Transgenic Mice Expressing Human Transferrin as a Model for Meningococcal Infection

Maria-Leticia Zarantonelli; Marek Szatanik; Dario Giorgini; Eva Hong; Michel Huerre; Florian Guillou; Jean-Michel Alonso; Muhamed-Kheir Taha

ABSTRACT The pathogenesis of meningococcal disease is poorly understood due to the lack of a relevant animal model. Moreover, the use of animal models is not optimal as most meningococcal virulence determinants recognize receptors that are specifically expressed in human tissues. One major element of the host specificity is the system of meningococcal iron uptake by transferrin-binding proteins that bind specifically human transferrin but not murine transferrin. We developed a new mouse model for experimental meningococcal infection using transgenic mice expressing human transferrin. Intraperitoneal challenge of transgenic mice induced bacteremia for at least 48 h with an early stage of multiplication, whereas the initial inoculum was rapidly cleared from blood in wild-type mice. Inflammation in the subarachnoidal space with a high influx of polymorphonuclear cells was observed only in transgenic mice. Meningococcal mutants that were unable to use transferrin as a source of iron were rapidly cleared from both wild-type and transgenic mice. Thus, transgenic mice expressing human transferrin may represent an important advance as a new mouse model for in vivo studies of meningococcal virulence and immunogenicity factors.


Clinical and Vaccine Immunology | 2012

Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines

Brian D. Plikaytis; Maria Stella; Giuseppe Boccadifuoco; Lisa DeTora; Mauro Agnusdei; Laura Santini; Brunella Brunelli; Luca Orlandi; Isabella Simmini; Marzia Monica Giuliani; Morgan Ledroit; Eva Hong; Muhamed-Kheir Taha; Kim Ellie; Gowrisankar Rajam; George M. Carlone; Heike Claus; Ulrich Vogel; Ray Borrow; Jamie Findlow; Stefanie Gilchrist; Paola Stefanelli; Cecilia Fazio; Anna Carannante; Jan Oksnes; Elisabeth Fritzsønn; Anne-Marie Klem; Dominique A. Caugant; Raquel Abad; Julio A. Vázquez

ABSTRACT The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or “relative potency” (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified.


Clinical Microbiology and Infection | 2008

Hyperinvasive genotypes of Neisseria meningitidis in France

Maria-Leticia Zarantonelli; Marcelo Lancellotti; Ala-Eddine Deghmane; Dario Giorgini; Eva Hong; Corinne Ruckly; J.M. Alonso; Muhamed-Kheir Taha

Clinical isolates of Neisseria meningitidis from cases of meningococcal disease, collected between January 2000 and December 2004, were identified and typed at the French National Reference Centre. A representative subset of 546 isolates from among 2882 isolates was further genotyped by multilocus sequence typing to determine their genetic lineages (clonal complexes) and the degree of diversification among different clonal complexes. Representative isolates of the main clonal complexes were tested for their virulence in mice and for proapoptotic effects on human epithelial cells. High genetic diversity in some genetic lineages (ST-32 and ST-41/44) was correlated with heterogeneity in virulence in mice and proapoptotic effects on human epithelial cells. In contrast, the homogeneous genetic structure of isolates of the ST-11 clonal complex, regardless of their serogroup, correlated positively with a fatal outcome of the infection, increased virulence in mice and increased proapoptotic effects on human epithelial cells.


PLOS Pathogens | 2009

Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis

Ala-Eddine Deghmane; Carole Veckerlé; Dario Giorgini; Eva Hong; Corinne Ruckly; Muhamed-Kheir Taha

Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx.


The Journal of Infectious Diseases | 2010

Emergence of New Virulent Neisseria meningitidis Serogroup C Sequence Type 11 Isolates in France

Ala-Eddine Deghmane; Isabelle Parent du Chatelet; Marek Szatanik; Eva Hong; Corinne Ruckly; Dario Giorgini; Daniel Lévy-Bruhl; Jean-Michel Alonso; Muhamed-Kheir Taha

In France, there have been variations in the incidence of invasive meningococcal infection due to serogroup C isolates. Infection peaks were observed in 1992 and 2003 that involved isolates of phenotypes C:2a:P1.5,2 and/or C:2a:P1.5, which belong to the sequence type 11 (ST-11) clonal complex. We report an emergence of isolates belonging to the ST-11 clonal complex since 2003. These isolates displayed a new phenotype, C:2a:P1.7,1, caused infections that occurred as clusters, and were associated with increased infection severity and high virulence in mice. These isolates may be responsible for a peak in the incidence of serogroup C meningococcal infection in France, for which there is no routine vaccination to date.


Emerging Infectious Diseases | 2016

Whole-Genome Characterization of Epidemic Neisseria meningitidis Serogroup C and Resurgence of Serogroup W, Niger, 2015

Cecilia B. Kretz; Adam C. Retchless; Fati Sidikou; Bassira Issaka; Sani Ousmane; Stephanie Schwartz; Ashley Tate; Assimawè Pana; Berthe-Marie Njanpop-Lafourcade; Innocent Nzeyimana; Ricardo Obama Nse; Ala-Eddine Deghmane; Eva Hong; Ola Brønstad Brynildsrud; Ryan T. Novak; Sarah Meyer; Odile Ouwe Missi Oukem-Boyer; Olivier Ronveaux; Dominique A. Caugant; Muhamed-Kheir Taha; Xin Wang

In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013–2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.

Collaboration


Dive into the Eva Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio A. Vázquez

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Paola Stefanelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Abad

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge