Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhammad Azmi Abdul Wahab is active.

Publication


Featured researches published by Muhammad Azmi Abdul Wahab.


PLOS ONE | 2015

Larval settlement: the role of surface topography for sessile coral reef invertebrates

Steve W Whalan; Muhammad Azmi Abdul Wahab; Susanne Sprungala; Andrew J. Poole; Rocky de Nys

For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.


PeerJ | 2015

Biogeographic variation in the microbiome of the ecologically important sponge, Carteriospongia foliascens.

Heidi M. Luter; Stefanie Widder; Emmanuelle S. Botté; Muhammad Azmi Abdul Wahab; S. Whalan; Lucas Moitinho-Silva; Torsten Thomas; Nicole S. Webster

Sponges are well known for hosting dense and diverse microbial communities, but how these associations vary with biogeography and environment is less clear. Here we compared the microbiome of an ecologically important sponge species, Carteriospongia foliascens, over a large geographic area and identified environmental factors likely responsible for driving microbial community differences between inshore and offshore locations using co-occurrence networks (NWs). The microbiome of C. foliascens exhibited exceptionally high microbial richness, with more than 9,000 OTUs identified at 97% sequence similarity. A large biogeographic signal was evident at the OTU level despite similar phyla level diversity being observed across all geographic locations. The C. foliascens bacterial community was primarily comprised of Gammaproteobacteria (34.2% ± 3.4%) and Cyanobacteria (32.2% ± 3.5%), with lower abundances of Alphaproteobacteria, Bacteroidetes, unidentified Proteobacteria, Actinobacteria, Acidobacteria and Deltaproteobacteria. Co-occurrence NWs revealed a consistent increase in the proportion of Cyanobacteria over Bacteroidetes between turbid inshore and oligotrophic offshore locations, suggesting that the specialist microbiome of C. foliascens is driven by environmental factors.


PLOS ONE | 2014

Larval Behaviours and Their Contribution to the Distribution of the Intertidal Coral Reef Sponge Carteriospongia foliascens

Muhammad Azmi Abdul Wahab; Rocky de Nys; Nicole S. Webster; Steve W Whalan

Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge−1 day−1 during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities.


Marine and Freshwater Research | 2017

Patterns of reproduction in two co-occurring Great Barrier Reef sponges

Muhammad Azmi Abdul Wahab; Rocky de Nys; Ross Holzman; Caroline Luise Schneider; Steve W Whalan

Reproduction is a key biological process that underpins the persistence and maintenance of populations. However, information on the reproductive biology of Great Barrier Reef (GBR) sponges is depauperate. The present study established the reproductive biology of two co-occurring GBR sponges, namely Ianthella basta (Verongida) and Ircinia sp. (Dictyoceratida). Sponges were haphazardly sampled (monthly) over a period of 1 year. Histological analysis of samples established the sexuality, development, seasonality, gametogenesis and fecundity of the two species, as well as the effects of temperature on reproduction. I. basta is oviparous, whereas Ircinia sp. is viviparous. The mode of sexuality in I. basta could not be determined, because male propagules were not detected, whereas Ircinia sp. is a simultaneous hermaphrodite. Reproduction in I. basta is unique within the verongids and co-occurring oviparous species, with peak reproduction occurring at the minimum annual temperature (23°C) and spawning occurring as the temperature increased above 23.4°C. Reproduction in Ircinia sp. corresponded to patterns reported for other viviparous GBR species, with an increase in reproductive propagules, peak sperm release, fertilisation and spawning occurring at temperatures above 25°C. Fecundity in I. basta and Ircinia sp. is high compared with other sponge species in the region, which may contribute to their apparent abundance on the GBR.


PeerJ | 2017

Sediment tolerance mechanisms identified in sponges using advanced imaging techniques

Brian Strehlow; Mari Carmen Pineda; Alan Duckworth; Gary A. Kendrick; Michael Renton; Muhammad Azmi Abdul Wahab; Nicole S. Webster; Peta L. Clode

Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure) and 4 weeks (chronic exposure). In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM). Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks) following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i) mucus production, (ii) exclusion of particles by incurrent pores, (iii) closure of oscula and pumping cessation, (iv) expulsion of particles from the aquiferous system, and (v) tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.


Marine Pollution Bulletin | 2017

Comparisons of benthic filter feeder communities before and after a large-scale capital dredging program

Muhammad Azmi Abdul Wahab; Jane Fromont; Oliver Gomez; Rebecca Fisher; Ross Jones

Changes in turbidity, sedimentation and light over a two year large scale capital dredging program at Onslow, northwestern Australia, were quantified to assess their effects on filter feeder communities, in particular sponges. Community functional morphological composition was quantified using towed video surveys, while dive surveys allowed for assessments of species composition and chlorophyll content. Onslow is relatively diverse recording 150 sponge species. The area was naturally turbid (1.1 mean P80 NTU), with inshore sites recording 6.5× higher turbidity than offshore localities, likely influenced by the Ashburton River discharge. Turbidity and sedimentation increased by up to 146% and 240% through dredging respectively, with corresponding decreases in light levels. The effects of dredging was variable, and despite existing caveats (i.e. bleaching event and passing of a cyclone), the persistence of sponges and the absence of a pronounced response post-dredging suggest environmental filtering or passive adaptation acquired pre-dredging may have benefited these communities.


PeerJ | 2018

Identification of an aquaculture poriferan “Pest with Potential” and its phylogenetic implications

Adrian Galitz; Steve de C. Cook; Merrick Ekins; John N. A. Hooper; Peter T. Naumann; Nicole J. de Voogd; Muhammad Azmi Abdul Wahab; Gert Wörheide; Dirk Erpenbeck

Correct identification and classification of sponges is challenging due to ambiguous or misleading morphological features. A particular case is a blue keratose sponge occasionally referred to as the “Blue Photo Sponge” among aquarists, which appears frequently (and in several cases unintended) in private aquaria. This spicule-less species, occasionally specified as Collospongia auris Bergquist, Cambie & Kernan 1990, not only displays a high phenotypic plasticity in growth form and colour, it also proliferates in aquacultures under standard conditions unlike most other sponges. Therefore, this species is regarded as a pest for most aquarists. In turn, the ease of cultivation and propagation in aquacultures qualifies this species as a model organism for a wide array of scientific applications. For these purposes, correct identification and classification are indispensable. We reconstructed ribosomal gene trees and determined this species as Lendenfeldia chondrodes (De Laubenfels, 1954) (Phyllospongiinae), distant to Collospongia auris, and corroborated by skeletal features. Additionally, the resulting phylogeny corroborated major shortcomings of the current Phyllospongiinae classification—its consequences are discussed.


FEMS Microbiology Ecology | 2018

In situ responses of the sponge microbiome to ocean acidification

Nora M. Kandler; Muhammad Azmi Abdul Wahab; Sam H. C. Noonan; James J. Bell; Simon K. Davy; Nicole S. Webster; Heidi M. Luter

Climate change is causing rapid changes in reef structure, biodiversity, and function, though most sponges are predicted to tolerate conditions projected for 2100. Sponges maintain intimate relationships with microbial symbionts, with previous studies suggesting that microbial flexibility may be pivotal to success under ocean acidification (OA). We performed a reciprocal transplantation of the coral reef sponges Coelocarteria singaporensis and Stylissa cf. flabelliformis between a control reef site and an adjacent CO2 vent site in Papua New Guinea to explore how the sponge microbiome responds to OA. Microbial communities of C. singaporensis, which differed initially between sites, did not shift towards characteristic control or vent microbiomes, even though relative abundances of Chloroflexi and Cyanobacteria increased and that of Thaumarchaeota decreased 7 months after transplantation to the control site. Microbial communities of S. cf. flabelliformis, which were initially stable between sites, did not respond specifically to transplantation but collectively exhibited a significant change over time, with a relative increase in Thaumarchaeota and decrease in Proteobacteria in all treatment groups. The lack of a community shift upon transplantation to the vent site suggests that microbial flexibility, at least in the adult life-history stage, does not necessarily underpin host survival under OA .


Journal of Experimental Marine Biology and Ecology | 2014

The influence of habitat on post-settlement processes, larval production and recruitment in a common coral reef sponge

Muhammad Azmi Abdul Wahab; Rocky de Nys; David A. Abdo; Nicole S. Webster; Steve W Whalan


Diversity | 2016

Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia

Jane Fromont; Muhammad Azmi Abdul Wahab; Oliver Gomez; Merrick Ekins; Monique Grol; John N. A. Hooper

Collaboration


Dive into the Muhammad Azmi Abdul Wahab's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve W Whalan

Southern Cross University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuelle S. Botté

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Heidi M. Luter

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam H. C. Noonan

Australian Institute of Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge