Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuelle S. Botté is active.

Publication


Featured researches published by Emmanuelle S. Botté.


The ISME Journal | 2015

Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges

Kathleen M. Morrow; David G. Bourne; Craig Humphrey; Emmanuelle S. Botté; Patrick W. Laffy; Jesse Zaneveld; Sven Uthicke; Katharina E. Fabricius; Nicole S. Webster

Atmospheric carbon dioxide (CO2) levels are rapidly rising causing an increase in the partial pressure of CO2 (pCO2) in the ocean and a reduction in pH known as ocean acidification (OA). Natural volcanic seeps in Papua New Guinea expel 99% pure CO2 and thereby offer a unique opportunity to explore the effects of OA in situ. The corals Acropora millepora and Porites cylindrica were less abundant and hosted significantly different microbial communities at the CO2 seep than at nearby control sites <500 m away. A primary driver of microbial differences in A. millepora was a 50% reduction of symbiotic Endozoicomonas. This loss of symbiotic taxa from corals at the CO2 seep highlights a potential hurdle for corals to overcome if they are to adapt to and survive OA. In contrast, the two sponges Coelocarteria singaporensis and Cinachyra sp. were ∼40-fold more abundant at the seep and hosted a significantly higher relative abundance of Synechococcus than sponges at control sites. The increase in photosynthetic microbes at the seep potentially provides these species with a nutritional benefit and enhanced scope for growth under future climate scenarios (thus, flexibility in symbiosis may lead to a larger niche breadth). The microbial community in the apparently pCO2-sensitive sponge species S. massa was not significantly different between sites. These data show that responses to elevated pCO2 are species-specific and that the stability and flexibility of microbial partnerships may have an important role in shaping and contributing to the fitness and success of some hosts.


The ISME Journal | 2013

'Sponge-specific' bacteria are widespread (but rare) in diverse marine environments.

Michael W. Taylor; Peter Tsai; Rachel L. Simister; Peter Deines; Emmanuelle S. Botté; Gavin Ericson; Susanne Schmitt; Nicole S. Webster

Numerous studies have reported the existence of sponge-specific 16S ribosomal RNA (rRNA) gene sequence clusters, representing bacteria found in sponges but not detected in other environments, such as seawater. The advent of deep-sequencing technologies allows us to examine the rare microbial biosphere in order to establish whether these bacteria are truly sponge specific, or are more widely distributed but only at abundances below the detection limit of conventional molecular approaches. We screened >12 million publicly available 16S rRNA gene pyrotags derived from 649 seawater, sediment, hydrothermal vent and coral samples from temperate, tropical and polar regions. We detected 77 of the 173 previously described sponge-specific clusters in seawater or other non-sponge samples, albeit generally at extremely low abundances. Sequences representing the candidate phylum ‘Poribacteria’, previously thought to be largely restricted to sponges, were recovered from 46 (out of 411) seawater and 41 (out of 129) sediment samples. While the presence of an organism does not imply that it is active in situ, our results do suggest that many ‘sponge-specific’ bacteria occur more widely outside of sponge hosts than previously thought.


Environmental Microbiology Reports | 2011

The larval sponge holobiont exhibits high thermal tolerance.

Nicole S. Webster; Emmanuelle S. Botté; Rochelle M. Soo; Steve W Whalan

Marine sponges are critical components of benthic environments; however, their sessile habit, requirement to filter large volumes of water and complex symbiotic partnerships make them particularly vulnerable to the effects of global climate change. We assessed the effect of elevated seawater temperature on bacterial communities in larvae of the Great Barrier Reef sponge, Rhopaloeides odorabile. In contrast to the strict thermal threshold of 32°C previously identified in adult R. odorabile, larvae exhibit a markedly higher thermal tolerance, with no adverse health effects detected at temperatures below 36°C. Similarly, larval microbial communities were conserved at temperatures up to 34°C with a highly significant shift occurring after 24 h at 36°C. This shift involved the loss of previously described symbionts (in particular the Nitrospira, Chloroflexi and a Roseobacter lineage) and the appearance of new Gammaproteobacteria not detected at lower temperatures. Here, we demonstrated that sponge larvae maintain highly stable symbioses at seawater temperatures exceeding those that are predicted under current climate change scenarios. In addition, by revealing that the shift in microbial composition occurs in conjunction with necrosis and mortality of larvae at 36°C we have provided additional evidence of the strong link between host health and the stability of symbiont communities.


Scientific Reports | 2016

Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

Nicole S. Webster; Andrew P. Negri; Emmanuelle S. Botté; Patrick W. Laffy; Florita Flores; Sam H. C. Noonan; C. Schmidt; Sven Uthicke

Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479–499 μatm) and pH 7.9 (pCO2 738–835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.


Environmental Microbiology Reports | 2013

Near‐future ocean acidification causes differences in microbial associations within diverse coral reef taxa

Nicole S. Webster; Andrew P. Negri; Florita Flores; Craig Humphrey; Rochelle M. Soo; Emmanuelle S. Botté; N. Vogel; Sven Uthicke

Microorganisms form symbiotic partnerships with a diverse range of marine organisms and can be critical to the health and survival of their hosts. Despite the importance of these relationships, the sensitivity of symbiotic microbes to ocean acidification (OA) is largely unknown and this needs to be redressed to adequately predict marine ecosystem resilience in a changing climate. We adopted a profiling approach to explore the sensitivity of microbes associated with coral reef biofilms and representatives of three ecologically important calcifying invertebrate phyla [corals, foraminifera and crustose coralline algae (CCA)] to OA. The experimental design for this study comprised four pHs consistent with current IPCC predictions for the next few centuries (pHNIST 8.1, 7.9, 7.7, 7.5); these pH/pCO₂ conditions were produced in flow-through aquaria using CO₂ bubbling. All reduced pH/increased pCO₂ treatments caused clear differences in the microbial communities associated with coral, foraminifera, CCA and reef biofilms over 6 weeks, while no visible signs of host stress were detected over this period. The microbial communities of coral, foraminifera, CCA and biofilms were significantly different between pH 8.1 (pCO₂ = 464 μatm) and pH 7.9 (pCO₂ = 822 μatm), a concentration likely to be exceeded by the end of the present century. This trend continued at lower pHs/higher pCO₂. 16S rRNA gene sequencing revealed variable and species-specific changes in the microbial communities with no microbial taxa consistently present or absent from specific pH treatments. The high sensitivity of coral, foraminifera, CCA and biofilm microbes to OA conditions projected to occur by 2100 is a concern for reef ecosystems and highlights the need for urgent research to assess the implications of microbial shifts for host health and coral reef processes.


Molecular Ecology | 2013

A complex life cycle in a warming planet: gene expression in thermally stressed sponges

Nicole S. Webster; R Pantile; Emmanuelle S. Botté; David A. Abdo; Nikos Andreakis; Steve W Whalan

Sponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long‐term consequences of climate change for sponge population dynamics.


Scientific Reports | 2016

Acute ecotoxicology of natural oil and gas condensate to coral reef larvae.

Andrew P. Negri; Diane Brinkman; Florita Flores; Emmanuelle S. Botté; Ross J. Jones; Nicole S. Webster

Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l−1, similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l−1 TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.


Environmental Microbiology Reports | 2013

Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.

David G. Bourne; Marc J. J. van der Zee; Emmanuelle S. Botté; Yui Sato

This study investigated the diversity and quantitative shifts of sulfur-oxidizing bacteria (SOB) during the onset of black band disease (BBD) in corals using quantitative PCR (qPCR) and cloning approaches targeting the soxB gene, involved in sulfur oxidation. Four Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CP) (comprising microbial communities different from those of BBD lesions), was monitored in situ as CP developed into BBD. The overall abundance of SOB in both CP and BBD lesions were very low and near the detection limit of the qPCR assay, although consistently indicated that SOB populations decreased as the lesions transitioned from CP to BBD. Phylogenetic assessment of retrieved soxB genes showed that SOB in both CP and BBD lesions were dominated by one sequence type, representing > 70% of all soxB gene sequences and affiliated with members of the Rhodobacteraceae within the α-Proteobacteria. This study represents the first assessment targeting SOB within BBD lesions and clearly shows that SOB are not highly diverse or abundant in this complex microbial mat. The lack of oxidation of reduced sulfur compounds by SOB likely aids the accumulation of high levels of sulfide at the base of the BBD mat, a compound contributing to the pathogenicity of BBD lesions.


PeerJ | 2015

Biogeographic variation in the microbiome of the ecologically important sponge, Carteriospongia foliascens.

Heidi M. Luter; Stefanie Widder; Emmanuelle S. Botté; Muhammad Azmi Abdul Wahab; S. Whalan; Lucas Moitinho-Silva; Torsten Thomas; Nicole S. Webster

Sponges are well known for hosting dense and diverse microbial communities, but how these associations vary with biogeography and environment is less clear. Here we compared the microbiome of an ecologically important sponge species, Carteriospongia foliascens, over a large geographic area and identified environmental factors likely responsible for driving microbial community differences between inshore and offshore locations using co-occurrence networks (NWs). The microbiome of C. foliascens exhibited exceptionally high microbial richness, with more than 9,000 OTUs identified at 97% sequence similarity. A large biogeographic signal was evident at the OTU level despite similar phyla level diversity being observed across all geographic locations. The C. foliascens bacterial community was primarily comprised of Gammaproteobacteria (34.2% ± 3.4%) and Cyanobacteria (32.2% ± 3.5%), with lower abundances of Alphaproteobacteria, Bacteroidetes, unidentified Proteobacteria, Actinobacteria, Acidobacteria and Deltaproteobacteria. Co-occurrence NWs revealed a consistent increase in the proportion of Cyanobacteria over Bacteroidetes between turbid inshore and oligotrophic offshore locations, suggesting that the specialist microbiome of C. foliascens is driven by environmental factors.


Environmental Microbiology | 2012

Sponge‐specific clusters revisited: a comprehensive phylogeny of sponge‐associated microorganisms

Rachel L. Simister; Peter Deines; Emmanuelle S. Botté; Nicole S. Webster; Michael W. Taylor

Collaboration


Dive into the Emmanuelle S. Botté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick W. Laffy

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Sven Uthicke

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Negri

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

David G. Bourne

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Florita Flores

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Karen D. Weynberg

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Craig Humphrey

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Elisha M. Wood-Charlson

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge