Muhammad Naqvi
Mälardalen University College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammad Naqvi.
Bioresource Technology | 2010
Muhammad Naqvi; Jinyue Yan; Erik Dahlquist
Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted.
Bioresource Technology | 2010
Muhammad Naqvi; Jinyue Yan; Morgan Fröling
There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill.
Bioresource Technology | 2017
Abdul-Sattar Nizami; Mohammad Rehan; Muhammad Waqas; Muhammad Naqvi; Omar K. M. Ouda; Khurram Shahzad; R. Miandad; Mohammad Zain Khan; Mochamad Syamsiro; Iqbal Mohammad Ismail; Deepak Pant
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies.
Bioresource Technology | 2012
Muhammad Naqvi; Jinyue Yan; Erik Dahlquist
This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden.
Applied Catalysis A-general | 2017
Muhammad Danish; Xiaogang Gu; Shuguang Lu; Mark L. Brusseau; Ayyaz Ahmad; Muhammad Naqvi; Usman Farooq; Waqas Qamar Zaman; Xiaori Fu; Zhouwei Miao
Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH•). The quantification of OH• elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH•. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation.
Biofuels | 2017
Muhammad Naqvi; Erik Dahlquist; Jinyue Yan
ABSTRACT Biorefinery systems at combined heat and power (CHP) plants represent numerous technical, economic and environmental benefits by utilizing the existing biomass handling infrastructure and producing biofuels together with heat and power. This study evaluates the economic feasibility of integrating biomass gasification to an existing CHP plant. Integration includes biomass gasification with downstream processing of the synthesis gas to remove particles and tars, condense out water, remove CO2 and use membrane filtration (polyamide membrane) to extract hydrogen. The separated residual gas components are utilized as extra fuel to the boiler in the CHP plant. Approximately 58.5 MWth of synthesis gas can be produced from a 90 MWth plant that represents 16.4 MWth of hydrogen. The rest of the heating value of produced synthesis gas (in the form of methane and carbon monoxide) is utilized for heat and power production. From an economic perspective, the production cost of hydrogen is estimated to be 0.125–0.75 €/kg. This can be compared to the US governments goal that H2 produced by wind power plus electrolyzers should have a maximum cost of 2.8–3.4 €/kg. The lower cost is for a unit operating at 3 bar and assuming that the costs are split between H2 and the syngas residue that is combusted, while the higher prices assume an atmospheric gasifier and all costs are put on the H2 produced.
Applied Petrochemical Research | 2018
Salman Raza Naqvi; Ayesha Bibi; Muhammad Naqvi; Tayyaba Noor; Abdul-Sattar Nizami; Mohammad Rehan; Muhammad Ayoub
The octane enhancement of light straight run naphtha is one of the significant solid acid catalyzed processes in the modern oil refineries due to limitations of benzene, aromatics, and olefin content in gasoline. This paper aims to examine the role of various catalysts that are being utilized for the isomerization of light naphtha with an ambition to give an insight into the reaction mechanism at the active catalyst sites, and the effect of various contaminants on catalyst activity. In addition, different technologies used for isomerization process are evaluated and compared by different process parameters.Graphical abstract
Applied Energy | 2012
Muhammad Naqvi; Jinyue Yan; Erik Dahlquist
Applied Energy | 2012
Muhammad Naqvi; Jinyue Yan; Erik Dahlquist
Applied Energy | 2013
Muhammad Naqvi; Jinyue Yan; Erik Dahlquist