Muhammad Zahid Qureshi
Government College University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammad Zahid Qureshi.
Asian Pacific Journal of Cancer Prevention | 2014
Aliye Aras; Abdur Rehman Khokhar; Muhammad Zahid Qureshi; Agnieszka Sobczak-Kupiec; Edgardo Alfonso Gómez Pineda; Ana Adelina; Winkler Hechenleitner; Ammad Ahmad Farooqi
It is becoming progressively more understandable that different phytochemicals isolated from edible plants interfere with specific stages of carcinogenesis. Cancer cells have evolved hallmark mechanisms to escape from death. Concordant with this approach, there is a disruption of spatiotemproal behaviour of signaling cascades in cancer cells, which can escape from apoptosis because of downregulation of tumor suppressor genes and over- expression of oncogenes. Genomic instability, intra-tumor heterogeneity, cellular plasticity and metastasizing potential of cancer cells all are related to molecular alterations. Data obtained through in vitro studies has convincingly revealed that curcumin, EGCG, resveratrol and quercetin are promising anticancer agents. Their efficacy has been tested in tumor xenografted mice and considerable experimental findings have stimulated researchers to further improve the bioavailability of these nutraceuticals. We partition this review into different sections with emphasis on how bioavailability of curcumin, EGCG, resveratrol and quercetin has improved using different nanotechnology approaches.
Asian Pacific Journal of Cancer Prevention | 2014
Muserref Hilal Sehitoglu; Ammad Ahmad Farooqi; Muhammad Zahid Qureshi; Ghazala Butt; Aliye Aras
It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in-vitro and in- vivo evidence indicates that anthocyanins have anticancer activity in rodent models of cancer. More intriguingly, evaluation of bilberry anthocyanins as chemopreventive agents in twenty-five colorectal cancer patients has opened new window of opportunity in translating the findings from laboratory to clinic. Confluence of information suggests that anthocyanins treated cancer cells reveal up-regulation of tumor suppressor genes. There is a successive increase in the research-work in nutrigenomics and evidence has started to shed light on intracellular-signaling cascades as common molecular targets for anthocyanins. In this review we bring to limelight how anthocyanins induced apoptosis in cancer cells via activation of extrinsic and intrinsic pathways.
Asian Pacific Journal of Cancer Prevention | 2014
Ammad Ahmad Farooqi; Muhammad Zahid Qureshi; Ender Coskunpinar; Syed Kamran-ul-Hassan Naqvi; Ilhan Yaylim; Muhammad Ismail
It is becoming progressively more understandable that between transcription and translation there lies another versatile regulator that quantitatively controls the expression of mRNAs. Identification of miRNAs as key regulators of wide ranging signaling cascades and modulators of different cell-type and context dependent activities attracted basic and clinical scientists to study modes and mechanisms in details. In line with this approach overwhelmingly increasing in vivo and in vitro studies are deepening our understanding regarding miR-421, mir-155 and miR-650 mediated regulation of cellular activities. We also attempt to provide an overview of long non coding RNAs.
Asian Pacific Journal of Cancer Prevention | 2014
Marcela Fernandes Silva; Abdur Rehman Khokhar; Muhammad Zahid Qureshi; Ammad Ahmad Farooqi
Increasingly it is being realized that despite considerable advancements in therapeutic interventions related to treatment of cancer, satisfactory results are still difficult to achieve. Rapidly accumulating evidence has started to shed light on the fact that cancer cells escape from death via constitutive activation of pro-survival signaling cascades. Cell biology and genetics have extensively enhanced our current understanding of the molecular mechanisms that underlie loss of apoptosis in cancer cells. This review is focused on ionizing radiation mediated restoration of TRAIL mediated apoptosis as evidenced by cell culture and animal model studies. Moreover, we also bring to the limelight radiation induced expression of miRNAs and how miRNAs further control response of cancer cells to radiation.
Ecancermedicalscience | 2016
George E. Naoum; Fady Tawadros; Ammad Ahmad Farooqi; Muhammad Zahid Qureshi; Sobia Tabassum; Donald J. Buchsbaum; Waleed Arafat
Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery.
Asian Pacific Journal of Cancer Prevention | 2014
Rukset Attar; Farhana Sajjad; Muhammad Zahid Qureshi; Fizza Tahir; Ejaz Hussain; Sundas Fayyaz; Ammad Ahmad Farooqi
Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.
Archivum Immunologiae Et Therapiae Experimentalis | 2016
Xiukun Lin; Ammad Ahmad Farooqi; Muhammad Zahid Qureshi; Mirna Azalea Romero; Sobia Tabassum; Muhammad Ismail
It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with “stem cell” like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as “cancer stem cells”. Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.
Current Topics in Medicinal Chemistry | 2016
Saima Jabeen; Muhammad Zahid Qureshi; Zeeshan Javed; Muhammad Javed Iqbal; Muhammad Ismail; Ammad Ahmad Farooqi
Research over the years has gradually and sequentially highlighted contributory role of hypothalamic- based kisspeptin-signaling axis as a major positive modulator of the neuroendocrinological reproductive axis in mammals. However, a series of landmark studies provided convincing evidence of role of this signaling in regulation of cancer development and progression. It is becoming progressively more understandable that loss or reduction of KISS1 expression in different human cancers correlates inversely with progression of tumor, metastasizing potential and survival. In this review we have attempted to provide an overview highlight of the most recent updates addressing metastasis- suppressing role of KISS1. We also summarize interplay of microRNA and KISS1 in cancer. The miRNA regulation of different genes is a rapidly expanding area of research however, the community lacks a deep understanding of miRNA regulation of KISS1. Recently, emerging laboratory findings have shown that KISS1 is transcriptionally controlled by TCF21 that is in turn regulated by miR-21. Therefore, there is an urgent need for further study of how miRNA directly or indirectly influences KISS1 at the posttranscriptional level. There is also a lack of evidence regarding natural agents that mediate upregulation or downregulation of KISS1. Increasing the knowledge of the KISS1/KISS1R signaling axis will be helpful in achieving personalized medicine.
Archivum Immunologiae Et Therapiae Experimentalis | 2012
Ammad Ahmad Farooqi; Sundas Fayyaz; Muhammad Zahid Qureshi; Sadia Rashid
Prostate cancer is a life-threatening molecular disorder that is undruggable to date because of stumbling blocks in the standardization of therapy. An emerging framework of research is addressing how pathways that are derailed during tumorigenesis are linked to immunological responses, which are instrumental in immunosurveillance of cancer. However, interestingly, cancer cells circumvent such immunosurveillance through development of poorly immunogenic tumor cell variants (immunoselection) and through subversion of the immunological nanomachinery (immunosubversion). Detailed mechanistic insights of molecular specificities that regulate natural killer (NK) cell function suggest that it might be promising to design NK cell-based immunotherapeutic interventions against prostate cancer. Here, we elucidate evidence for NK cell targeting of prostate cancer proteome and address critical questions that, in our view, need thoughtfulness for the development of successful NK cell-based therapies. This review also disproves our contemporary understanding of the versatile regulators of DNA damage repair (ATM, ATR) that trigger cell surface expression of NKG2D ligands and consequent elimination of the tumor cells by NK cells and other lymphocytes that express NK cell receptors. Substantial fraction of information has been generated that guarantees productive future for this technology as more optimized constructs, better trial designs, and improved platforms are being brought from benchtop to bedside.
Asian Pacific Journal of Cancer Prevention | 2015
Muhammad Zahid Qureshi; Mirna Azalea Romero; Rukset Attar; Zeeshan; Ammad Ahmad Farooqi
Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition of the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside.