Mun Fai Loke
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mun Fai Loke.
The Scientific World Journal | 2014
Yalda Khosravi; Bee Hoon Poh; Chow Goon Ng; Mun Fai Loke; Khean-Lee Goh; Jamuna Vadivelu
Human stomach is the only known natural habitat of Helicobacter pylori (Hp), a major bacterial pathogen that causes different gastroduodenal diseases. Despite this, the impact of Hp on the diversity and the composition of the gastric microbiota has been poorly studied. In this study, we have analyzed the culturable gastric microbiota of 215 Malaysian patients, including 131 Hp positive and 84 Hp negative individuals that were affected by different gastric diseases. Non-Hp bacteria isolated from biopsy samples were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry based biotyping and 16SrRNA sequencing. The presence of Hp did not significantly modify the diversity of the gastric microbiota. However, correlation was observed between the isolation of Streptococci and peptic ulcer disease. In addition, as a first report, Burkholderia pseudomallei was also isolated from the gastric samples of the local population. This study suggested that there may be geographical variations in the diversity of the human gastric microbiome. Geographically linked diversity in the gastric microbiome and possible interactions between Hp and other bacterial species from stomach microbiota in pathogenesis are proposed for further investigations.
Phytomedicine | 2013
Heyam Mohamed Ali Sidahmed; Najihah Mohd Hashim; Junaidah Amir; Mahmood Ameen Abdulla; A. Hamid A. Hadi; Siddig Ibrahim Abdelwahab; Manal Mohamed Elhassan Taha; Pouya Hassandarvish; Xinsheng Teh; Mun Fai Loke; Jamuna Vadivelu; Mawardi Rahmani; Syam Mohan
Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.
The Scientific World Journal | 2012
Yalda Khosravi; Mun Fai Loke; Eng Guan Chua; Sun Tee Tay; Jamuna Vadivelu
Carbapenems are the primary choice of treatment for severe Pseudomonas aeruginosa infection. However, the emergence of carbapenem resistance due to the production of metallo-β-lactamases (MBLs) is of global concern. In this study, 90 imipenem- (IPM- or IP-) resistant P. aeruginosa (IRPA) isolates, including 32 previously tested positive and genotyped for MBL genes by PCR, were subjected to double-disk synergy test (DDST), combined disk test (CDT), and imipenem/imipenem-inhibitor (IP/IPI) E-test to evaluate their MBLs detection capability. All three methods were shown to have a sensitivity of 100%. However, DDST was the most specific of the three (96.6%), followed by IP/IPI E-test interpreted based on the single criteria of IP/IPI ≥8 as positive (62.1%), and CDT was the least specific (43.1%). Based on the data from this evaluation, we propose that only IRPA with IP MIC >16 μg/mL and IP/IPI ≥8 by IP/IPI E-test should be taken as positive for MBL activity. With the new dual interpretation criteria, the MBL IP/IPI E-test was shown to achieve 100% sensitivity as well as specificity for the IRPA in this study. Therefore, the IP/IPI E-test is a viable alternative phenotypic assay to detect MBL production in IRPA in our population in circumstances where PCR detection is not a feasible option.
BMC Genomics | 2015
Woon Ching Lee; Brian P. Anton; Susana Wang; Primo Baybayan; Siddarth Singh; Meredith Ashby; Eng Guan Chua; Chin Yen Tay; Fanny Thirriot; Mun Fai Loke; Khean-Lee Goh; Barry J. Marshall; Richard J. Roberts; Jamuna Vadivelu
AbstractBackgroundThe genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).ResultsThe N4-methylcytosine and N6-methyladenine modifications detected at single-base resolution using SMRT technology revealed 17 methylated sequence motifs corresponding to one Type I and 16 Type II restriction-modification (R-M) systems. Previously unassigned methylation motifs were now assigned to their respective MTases-coding genes. Furthermore, one gene that appears to be inactive in the H. pylori UM032 genome during normal growth was characterized by cloning.ConclusionConsistent with previously-studied H. pylori strains, we show that strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Additional studies are underway to further elucidating the biological significance of the R-M systems in the physiology and pathogenesis of H. pylori.
Scientific Reports | 2015
Yalda Khosravi; Shih Wee Seow; Arlaine Anne Amoyo; Kher Hsin Chiow; Tuan Lin Tan; Whye Yen Wong; Qian Hui Poh; Ignatius Mario Doli Sentosa; Ralph M. Bunte; Sven Pettersson; Mun Fai Loke; Jamuna Vadivelu
Helicobacter pylori, is an invariably commensal resident of the gut microbiome associated with gastric ulcer in adults. In addition, these patients also suffered from a low grade inflammation that activates the immune system and thus increased shunting of energy to host defense mechanisms. To assess whether a H. pylori infection could affect growth in early life, we determined the expression levels of selected metabolic gut hormones in germ free (GF) and specific pathogen-free (SPF) mice with and without the presence of H. pylori. Despite H. pylori-infected (SPFH) mice display alteration in host metabolism (elevated levels of leptin, insulin and peptide YY) compared to non-infected SPF mice, their growth curves remained the same. SPFH mice also displayed increased level of eotaxin-1. Interestingly, GF mice infected with H. pylori (GFH) also displayed increased levels of ghrelin and PYY. However, in contrast to SPFH mice, GFH showed reduced weight gain and malnutrition. These preliminary findings show that exposure to H. pylori alters host metabolism early in life; but the commensal microbiota in SPF mice can attenuate the growth retarding effect from H. pylori observed in GF mice. Further investigations of possible additional side effects of H. pylori are highly warranted.
PLOS ONE | 2014
Xinsheng Teh; Yalda Khosravi; Woon Ching Lee; Alex Hwong Ruey Leow; Mun Fai Loke; Jamuna Vadivelu; Khean-Lee Goh
Background Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment. Methods and Findings H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance. Conclusion Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).
Nucleic Acids Research | 2015
Narender Kumar; Vanitha Mariappan; Ramani Baddam; Aditya K. Lankapalli; Sabiha Shaik; Khean-Lee Goh; Mun Fai Loke; Tim Perkins; Mohammed Benghezal; Seyed E. Hasnain; Jamuna Vadivelu; Barry J. Marshall; Niyaz Ahmed
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host–pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
PLOS ONE | 2014
Yalda Khosravi; Mun Fai Loke; Khean-Lee Goh; Jamuna Vadivelu
Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptocccus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.
Scientific Reports | 2016
Mun Fai Loke; Chow Goon Ng; Yeespana Vilashni; Justin Lim; Bow Ho
Helicobacter pylori may reside in the human stomach as two morphological forms: the culturable spiral form and the viable but non-culturable (VBNC) coccoid form. This bacterium transforms from spiral to coccoid under in vitro suboptimal conditions. However, both spiral and coccoid have demonstrated its infectivity in laboratory animals, suggesting that coccoid may potentially be involved in the transmission of H. pylori. To determine the relevance of the coccoid form in viability and infectivity, we compared the protein profiles of H. pylori coccoids obtained from prolonged (3-month-old) culture with that of 3-day-old spirals of two H. pylori standard strains using SWATH (Sequential Window Acquisition of all Theoretical mass spectra)-based approach. The protein profiles reveal that the coccoids retained basal level of metabolic proteins and also high level of proteins that participate in DNA replication, cell division and biosynthesis demonstrating that coccoids are viable. Most interestingly, these data also indicate that the H. pylori coccoids possess higher level of proteins that are involved in virulence and carcinogenesis than their spiral counterparts. Taken together, these findings have important implications in the understanding on the pathogenesis of H. pylori-induced gastroduodenal diseases, as well as the probable transmission mode of this bacterium.
Gut Pathogens | 2014
Yalda Khosravi; Vellaya Rehvathy; Wei Yee Wee; Susana Wang; Primo Baybayan; Siddarth Singh; Meredith Ashby; Junxian Ong; Arlaine Anne Amoyo; Shih Wee Seow; Siew Woh Choo; Tim Perkins; Eng Guan Chua; Alfred Tay; Barry J. Marshall; Mun Fai Loke; Khean-Lee Goh; Sven Pettersson; Jamuna Vadivelu
Correction: Comparing the genomes of Helicobacter pylori clinical strain UM032 and mice-adapted derivatives Yalda Khosravi, Vellaya Rehvathy, Wei Yee Wee, Susana Wang, Primo Baybayan, Siddarth Singh, Meredith Ashby, Junxian Ong, Arlaine Anne Amoyo, Shih Wee Seow, Siew Woh Choo, Tim Perkins, Eng Guan Chua, Alfred Tay, Barry James Marshall, Mun Fai Loke, Khean Lee Goh, Sven Pettersson and Jamuna Vadivelu