Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muraleedharan G. Nair is active.

Publication


Featured researches published by Muraleedharan G. Nair.


Free Radical Biology and Medicine | 1998

Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system.

Arti Arora; Muraleedharan G. Nair; Gale M. Strasburg

Structurally diverse plant phenolics were examined for their abilities to inhibit lipid peroxidation induced either by Fe(II) and Fe(III) metal ions or by azo-derived peroxyl radicals in a liposomal membrane system. The antioxidant abilities of flavonoids were compared with those of coumarin and tert-butylhydroquinone (TBHQ). The antioxidant efficacies of these compounds were evaluated on the basis of their abilities to inhibit the fluorescence intensity decay of an extrinsic probe, 3-(p-(6-phenyl)-I,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), caused by the free radicals generated during lipid peroxidation. All the flavonoids tested exhibited higher antioxidant efficacies against metal-ion-induced peroxidations than peroxyl-radical-induced peroxidation, suggesting that metal chelation may play a larger role in determining the antioxidant activities of these compounds than has previously been believed. Distinct structure-activity relationships were also revealed for the antioxidant abilities of the flavonoids. Presence of hydroxyl substituents on the flavonoid nucleus enhanced activity, whereas substitution by methoxy groups diminished antioxidant activity. Substitution patterns on the B-ring especially affected antioxidant potencies of the flavonoids. In cases where the B-ring could not contribute to the antioxidant activities of flavonoids, hydroxyl substituents in an catechol structure on the A-ring were able to compensate and become a larger determinant of flavonoid antioxidant activity.


Phytomedicine | 2001

Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries

Navindra P. Seeram; Momin Ra; Muraleedharan G. Nair; Leslie D. Bourquin

Anthocyanins from tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton and Montmorency; sweet cherries, Prunus avium L. (Rosaceae); bilberries, Vaccinum myrtillus L. (Ericaceae); blackberries, Rubus sp. (Rosaceae); blueberries var. Jersey, Vaccinium corymbosum L. (Ericaceae); cranberries var. Early Black, Vaccinium macrocarpon Ait. (Ericaceae); elderberries, Sambucus canadensis (Caprifoliaceae); raspberries, Rubus idaeus (Rosaceae); and strawberries var. Honeoye, Fragaria x ananassa Duch. (Rosaceae), were investigated for cyclooxygenase inhibitory and antioxidant activities. The presence and levels of cyanidin-3-glucosylrutinoside 1 and cyanidin-3-rutinoside 2 were determined in the fruits using HPLC. The antioxidant activity of anthocyanins from cherries was comparable to the commercial antioxidants, tert-butylhydroquinone, butylated hydroxytoluene and butylated hydroxyanisole, and superior to vitamin E, at a test concentration of 125 microg/ml. Anthocyanins from raspberries and sweet cherries demonstrated 45% and 47% cyclooxygenase-I and cyclooxygenase-II inhibitory activities, respectively, when assayed at 125 microg/ml. The cyclooxygenase inhibitory activities of anthocyanins from these fruits were comparable to those of ibuprofen and naproxen at 10 microM concentrations. Anthocyanins 1 and 2 are present in both cherries and raspberry. The yields of pure anthocyanins 1 and 2 in 100 g Balaton and Montmorency tart cherries, sweet cherries and raspberries were 21, 16.5; 11, 5; 4.95, 21; and 4.65, 13.5 mg, respectively. Fresh blackberries and strawberries contained only anthocyanin 2 in yields of 24 and 22.5 mg/100 g, respectively. Anthocyanins 1 and 2 were not found in bilberries, blueberries, cranberries or elderberries.


Cancer Letters | 2003

Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells

Soo Young Kang; Navindra P. Seeram; Muraleedharan G. Nair; Leslie D. Bourquin

Anthocyanins, which are bioactive phytochemicals, are widely distributed in plants and especially enriched in tart cherries. Based on previous observations that tart cherry anthocyanins and their respective aglycone, cyanidin, can inhibit cyclooxygenase enzymes, we conducted experiments to test the potential of anthocyanins to inhibit intestinal tumor development in Apc(Min) mice and growth of human colon cancer cell lines. Mice consuming the cherry diet, anthocyanins, or cyanidin had significantly fewer and smaller cecal adenomas than mice consuming the control diet or sulindac. Colonic tumor numbers and volume were not significantly influenced by treatment. Anthocyanins and cyanidin also reduced cell growth of human colon cancer cell lines HT 29 and HCT 116. The IC(50) of anthocyanins and cyanidin was 780 and 63 microM for HT 29 cells, respectively and 285 and 85 microM for HCT 116 cells, respectively. These results suggest that tart cherry anthocyanins and cyanidin may reduce the risk of colon cancer.


Journal of Agricultural and Food Chemistry | 2005

Insulin Secretion by Bioactive Anthocyanins and Anthocyanidins Present in Fruits

Bolleddula Jayaprakasam; Shaiju K. Vareed; L. Karl Olson; Muraleedharan G. Nair

Anthocyanins are responsible for a variety of bright colors including red, blue, and purple in fruits, vegetables, and flowers and are consumed as dietary polyphenols. Anthocyanin-containing fruits are implicated in a decrease in coronary heart disease and are used in antidiabetic preparations. In the present study, we have determined the ability of anthocyanins, cyanidin-3-glucoside (1), delphinidin-3-glucoside (2), cyanidin-3-galactoside (3), and pelargonidin-3-galactoside (4), and anthocyanidins, cyanidin (5), delphinidin (6), pelargonidin (7), malvidin (8), and petunidin (9), to stimulate insulin secretion from rodent pancreatic beta-cells (INS-1 832/13) in vitro. The compounds were tested in the presence of 4 and 10 mM glucose concentrations. Our results indicated that 1 and 2 were the most effective insulin secretagogues among the anthocyanins and anthocyanidins tested at 4 and 10 mM glucose concentrations. Pelargonidin-3-galactoside is one of the major anthocyanins, and its aglycone, pelargonidin, caused a 1.4-fold increase in insulin secretion at 4 mM glucose concentration. The rest of the anthocyanins and anthocyanidins tested in our assay had only marginal effects on insulin at 4 and 10 mM glucose concentrations.


Journal of Lipid Research | 2006

Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity

Yun Wang; Daniela Botolin; Jinghua Xu; Barbara Christian; Ernestine Mitchell; Bolleddula Jayaprakasam; Muraleedharan G. Nair; Jeffery M. Peters; Julia V. Busik; L. Karl Olson; Donald B. Jump

Fatty acid elongases and desaturases play an important role in hepatic and whole body lipid composition. We examined the role that key transcription factors played in the control of hepatic elongase and desaturase expression. Studies with peroxisome proliferator-activated receptor α (PPARα)-deficient mice establish that PPARα was required for WY14643-mediated induction of fatty acid elongase-5 (Elovl-5), Elovl-6, and all three desaturases [Δ5 desaturase (Δ5D), Δ6D, and Δ9D]. Increased nuclear sterol-regulatory element binding protein-1 (SREBP-1) correlated with enhanced expression of Elovl-6, Δ5D, Δ6D, and Δ9D. Only Δ9D was also regulated independently by liver X receptor (LXR) agonist. Glucose induction of l-type pyruvate kinase, Δ9D, and Elovl-6 expression required the carbohydrate-regulatory element binding protein/MAX-like factor X (ChREBP/MLX) heterodimer. Suppression of Elovl-6 and Δ9D expression in livers of streptozotocin-induced diabetic rats and high fat-fed glucose-intolerant mice correlated with low levels of nuclear SREBP-1. In leptin-deficient obese mice (Lepob/ob), increased SREBP-1 and MLX nuclear content correlated with the induction of Elovl-5, Elovl-6, and Δ9D expression and the massive accumulation of monounsaturated fatty acids (18:1,n-7 and 18:1,n-9) in neutral lipids. Diabetes- and obesity-induced changes in hepatic lipid composition correlated with changes in elongase and desaturase expression. In conclusion, these studies establish a role for PPARα, LXR, SREBP-1, ChREBP, and MLX in the control of hepatic fatty acid elongase and desaturase expression and lipid composition.


Phytomedicine | 2000

Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn.

M.A. Kelm; Muraleedharan G. Nair; Gale M. Strasburg; David L. DeWitt

Anti-oxidant bioassay-directed extraction of the fresh leaves and stems of Ocimum sanctum and purification of the extract yielded the following compounds; cirsilineol [1], cirsimaritin [2], isothymusin [3], isothymonin [4], apigenin [5], rosmarinic acid [6], and appreciable quantities of eugenol. The structures of compounds 1-6 were established using spectroscopic methods. Compounds 1 and 5 were isolated previously from O. sanctum whereas compounds 2 and 3 are here identified for the first time from O. sanctum. Eugenol, a major component of the volatile oil, and compounds 1, 3, 4, and 6 demonstrated good antioxidant activity at 10-microM concentrations. Anti-inflammatory activity or cyclooxygenase inhibitory activity of these compounds were observed. Eugenol demonstrated 97% cyclooxygenase-1 inhibitory activity when assayed at 1000-microM concentrations. Compounds 1, 2, and 4-6 displayed 37, 50, 37, 65, and 58% cyclooxygenase-1 inhibitory activity, respectively, when assayed at 1000-microM concentrations. Eugenol and compounds 1, 2, 5, and 6 demonstrated cyclooxygenase-2 inhibitory activity at slightly higher levels when assayed at 1000-microM concentrations. The activities of compounds 1-6 were comparable to ibuprofen, naproxen, and aspirin at 10-, 10-, and 1000-microM concentrations, respectively. These results support traditional uses of O. sanctum and identify the compounds responsible.


Phytomedicine | 2000

Cytotoxicity, antioxidant and anti-inflammatory activities of Curcumins I–III from Curcuma longa

Russel S. Ramsewak; David L. DeWitt; Muraleedharan G. Nair

Curcumin I, curcumin II (monodemethoxycurcumin) and curcumin III (bisdemethoxycurcumin) from Curcuma longa were assayed for their cytotoxicity, antioxidant and anti-inflammatory activities. These compounds showed activity against leukemia, colon, CNS, melanoma, renal, and breast cancer cell lines. The inhibition of liposome peroxidation by curcumins I-III at 100 microg/ml were 58, 40 and 22%, respectively. The inhibition of COX-I and COX-II enzymes by the curcumins was observed. Curcumins I-III were active against COX-I enzyme at 125 microg/ml and showed 32, 38.5 and 39.2% inhibition of the enzyme, respectively. Curcumins I-III also showed good inhibition of the COX-II enzyme at 125 mg/ml with 89.7, 82.5 and 58.9% inhibition of the enzyme, respectively.


Expert Opinion on Therapeutic Targets | 2006

From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer

Bharat B. Aggarwal; Haruyo Ichikawa; Prachi Garodia; Priya Weerasinghe; Gautam Sethi; Indra D. Bhatt; Manoj Pandey; Shishir Shishodia; Muraleedharan G. Nair

Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. Extensive research during the last 30 years has revealed much about the biology of cancer. Drugs used to treat most cancers are those that can block cell signalling, including growth factor signalling (e.g., epidermal growth factor); prostaglandin production (e.g., COX-2); inflammation (e.g., inflammatory cytokines: NF-κB, TNF, IL-1, IL-6, chemokines); drug resistance gene products (e.g., multi-drug resistance); cell cycle proteins (e.g., cyclin D1 and cyclin E); angiogenesis (e.g., vascular endothelial growth factor); invasion (e.g., matrix metalloproteinases); antiapoptosis (e.g., bcl-2, bcl-XL, XIAP, survivin, FLIP); and cellular proliferation (e.g., c-myc, AP-1, growth factors). Numerous reports have suggested that Ayurvedic plants and their components mediate their effects by modulating several of these recently identified therapeutic targets. However, Ayurvedic medicine requires rediscovery in light of our current knowledge of allopathic (modern) medicine. The focus of this review is to elucidate the Ayurvedic concept of cancer, including its classification, causes, pathogenesis and prevention; surgical removal of tumours; herbal remedies; dietary modifications; and spiritual treatments.


Molecular Cancer Therapeutics | 2006

Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-κB (NF-κB) activation and NF-κB–regulated gene expression

Haruyo Ichikawa; Yasunari Takada; Shishir Shishodia; Bolleddula Jayaprakasam; Muraleedharan G. Nair; Bharat B. Aggarwal

The plant Withania somnifera Dunal (Ashwagandha), also known as Indian ginseng, is widely used in the Ayurvedic system of medicine to treat tumors, inflammation, arthritis, asthma, and hypertension. Chemical investigation of the roots and leaves of this plant has yielded bioactive withanolides. Earlier studies showed that withanolides inhibit cyclooxygenase enzymes, lipid peroxidation, and proliferation of tumor cells. Because several genes that regulate cellular proliferation, carcinogenesis, metastasis, and inflammation are regulated by activation of nuclear factor-κB (NF-κB), we hypothesized that the activity of withanolides is mediated through modulation of NF-κB activation. For this report, we investigated the effect of the withanolide on NF-κB and NF-κB-regulated gene expression activated by various carcinogens. We found that withanolides suppressed NF-κB activation induced by a variety of inflammatory and carcinogenic agents, including tumor necrosis factor (TNF), interleukin-1β, doxorubicin, and cigarette smoke condensate. Suppression was not cell type specific, as both inducible and constitutive NF-κB activation was blocked by withanolides. The suppression occurred through the inhibition of inhibitory subunit of IκBα kinase activation, IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and subsequent p65 nuclear translocation. NF-κB-dependent reporter gene expression activated by TNF, TNF receptor (TNFR) 1, TNFR-associated death domain, TNFR-associated factor 2, and IκBα kinase was also suppressed. Consequently, withanolide suppressed the expression of TNF-induced NF-κB-regulated antiapoptotic (inhibitor of apoptosis protein 1, Bfl-1/A1, and FADD-like interleukin-1β-converting enzyme–inhibitory protein) and metastatic (cyclooxygenase-2 and intercellular adhesion molecule-1) gene products, enhanced the apoptosis induced by TNF and chemotherapeutic agents, and suppressed cellular TNF-induced invasion and receptor activator of NF-κB ligand-induced osteoclastogenesis. Overall, our results indicate that withanolides inhibit activation of NF-κB and NF-κB-regulated gene expression, which may explain the ability of withanolides to enhance apoptosis and inhibit invasion and osteoclastogenesis. [Mol Cancer Ther 2006;5(6):1434–45]


Cancer Letters | 2003

Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana

Bolleddula Jayaprakasam; Navindra P. Seeram; Muraleedharan G. Nair

Bioassay-guided purification of an extract of Cucurbita andreana fruits yielded cucurbitacins B (1), D (2), E (3), and I (4). These cucurbitacins were evaluated for their inhibitory effects on the growth of human colon (HCT-116), breast (MCF-7), lung (NCI-H460), and central nervous system (CNS) (SF-268) cancer cell lines, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes and on lipid peroxidation. Inhibitory activities of cucurbitacins B (1), D (2), E (3) and I (4), respectively, were for colon 81.5, 80.4, 77, and 65% at 0.4 microM, breast 87, 78, 66.5, and 12% at 0.4 microM, lung 96, 43, 37 and 2% at 0.1 microM and CNS 92, 25, 24 and 4% at 0.05 microM. Adriamycin (doxorubicin) was used as a positive control, which showed 64, 47, 45 and 71% inhibition of HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung) and SF-268 (CNS) cell lines, respectively, at 0.3 x 10(-5) M. Compounds 1, 2, 3, and 4 inhibited the COX-2 enzyme by 32, 29, 35, and 27%, respectively, at 100 microg/ml. However these compounds did not inhibit the COX-1 enzyme at this concentration. Ibuprofen, naproxen and vioxx, commercial antiinflammatory drugs, were tested as controls for the inhibition of COX-1 and COX-2 enzymes at concentrations of 2.1, 2.5 and 1.67 microg/ml, respectively. Ibuprofen and naproxen exhibited 59 and 95% COX-1, and 53 and 79% COX-2 inhibitory activities, respectively. Vioxx showed specific COX-2 inhibition by 71%. Also, cucurbitacins 1 and 4 inhibited lipid peroxidation by 59 and 23%, respectively, at 100 microg/ml.

Collaboration


Dive into the Muraleedharan G. Nair's collaboration.

Top Co-Authors

Avatar

David L. DeWitt

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanjun Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haibo Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Amitabh Chandra

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Yunbao Liu

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Alden M. Booren

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge