Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murali Vijayan is active.

Publication


Featured researches published by Murali Vijayan.


Biochimica et Biophysica Acta | 2016

Peripheral biomarkers of stroke: Focus on circulatory microRNAs.

Murali Vijayan; P. Hemachandra Reddy

Stroke is the second leading cause of death in the world. Stroke occurs when blood flow stops, and that stoppage results in reduced oxygen supply to neurons in the brain. The occurrence of stroke increases with age, but anyone at any age can suffer from stroke. Recent research has implicated multiple cellular changes in stroke patients, including oxidative stress and mitochondrial dysfunction, inflammatory responses, and changes in mRNA and proteins. Recent research has also revealed that stroke is associated with modifiable and non-modifiable risk factors. Stroke can be controlled by modifiable risk factors, including diet, cardiovascular, hypertension, smoking, diabetes, obesity, metabolic syndrome, depression and traumatic brain injury. Stroke is the major risk factor for vascular dementia (VaD) and Alzheimers disease (AD). The purpose of this article is to review the latest developments in research efforts directed at identifying 1) latest developments in identifying biomarkers in peripheral and central nervous system tissues, 2) changes in microRNAs (miRNAs) in patients with stroke, 3) miRNA profile and function in animal brain, and 4) protein biomarkers in ischemic stroke. This article also reviews research investigating circulatory miRNAs as peripheral biomarkers of stroke.


Biochemical and Biophysical Research Communications | 2017

A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease.

P. Hemachandra Reddy; Sahil Tonk; Subodh Kumar; Murali Vijayan; Ramesh Kandimalla; Chandra Sekhar Kuruva; Arubala P. Reddy

Currently, 5.4 million Americans suffer from AD, and these numbers are expected to increase up to 16 million by 2050. Despite tremendous research efforts, we still do not have drugs or agents that can delay, or prevent AD and its progression, and we still do not have early detectable biomarkers for AD. Multiple cellular changes have been implicated in AD, including synaptic damage, mitochondrial damage, production and accumulation of Aβ and phosphorylated tau, inflammatory response, deficits in neurotransmitters, deregulation of the cell cycle, and hormonal imbalance. Research into AD has revealed that miRNAs are involved in each of these cellular changes and interfere with gene regulation and translation. Recent discoveries in molecular biology have also revealed that microRNAs play a major role in post-translational regulation of gene expression. The purpose of this article is to review research that has assessed neuroprotective and neurodegenerative characteristics of microRNAs in brain samples from AD transgenic mouse models and patients with AD.


Journal of Alzheimer's Disease | 2016

Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links.

Murali Vijayan; P. Hemachandra Reddy

Stroke is a brain disease that occurs when blood flow stops, resulting in reduced oxygen supply to neurons. Stroke occurs at any time and at any age, but increases after the age of 55. It is the second leading cause of death and the third leading cause of disability-adjusted, life-years. The pathophysiology of ischemic stroke is complex and recent molecular, cellular, and animal models and postmortem brain studies have revealed that multiple cellular changes have been implicated, including oxidative stress/mitochondrial dysfunction, inflammatory responses, micro RNA alterations, and marked changes in brain proteins. These cellular changes provide new information for developing therapeutic strategies for ischemic stroke treatment. Research also revealed that stroke increases with a number of modifiable factors and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. Ischemic stroke is the major risk factor for vascular dementia and Alzheimers disease. This review summarizes the latest research findings on stroke, including causal factors and molecular links between stroke and vascular disease/Alzheimers disease.


Human Molecular Genetics | 2017

MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease

Subodh Kumar; Murali Vijayan; P. Hemachandra Reddy

The purpose of our study was to identify microRNAs (miRNAs) as early detectable peripheral biomarkers in Alzheimers disease (AD). To achieve our objective, we assessed miRNAs in serum samples from AD patients and Mild cognitive impairment (MCI) subjects relative to healthy controls. We used Affymetrix microarray analysis and validated differentially expressed miRNAs using qRT-PCR. We further validated miRNA data using AD postmortem brains, amyloid precursor protein transgenic mice and AD cell lines. We identified a gradual upregulation of four miRNAs: miR-455-3p, miR-4668-5p, miR-3613-3p and miR-4674. A fifth miRNA, mir-6722, was down-regulated in persons with AD and mild cognitive impairment compared with controls. Validation analysis by qRT-PCR showed significant upregulation of only miR-455-3p (P = 0.007) and miR-4668-5p (P = 0.016) in AD patients compared with healthy controls. Furthermore, qRT-PCR analysis of the AD postmortem brains with different Braak stages also showed upregulation of miR-455-3p (P = 0.016). However, receiver operating characteristic curves (ROC) curve analysis revealed a significant area under curve (AUC) value only for miR-455-3p in the serum (AUROC = 0.79; P = 0.015) and brains (AUROC = 0.86; P = 0.016) of AD patients. Expression analysis of amyloid precursor protein transgenic mice also revealed high level of mmu-miR-455-3p (P = 0.004) in the cerebral cortex (AD-affected) region of brain and low in the non-affected area, i.e. cerebellum. Furthermore, human and mouse neuroblastoma cells treated with the amyloid-β(1-42) peptide also showed a similarly higher expression of miR-455-3p. Functional analysis of differentially expressed miRNAs via the miR-path indicated that miR-455-3p was associated in the regulation of several biological pathways. Genes associated with these pathways were found to have a crucial role in AD pathogenesis. An increase in miR-455-3p expression found in AD patients and Aβ pathologies unveiled its biomarker characteristics and a precise role in AD pathogenesis.


Progress in Molecular Biology and Translational Science | 2017

MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases

Subodh Kumar; Murali Vijayan; J.S. Bhatti; P.H. Reddy

MicroRNAs (miRNAs) are found in the circulatory biofluids considering the important molecules for biomarker study in aging and age-related diseases. Blood or blood components (serum/plasma) are primary sources of circulatory miRNAs and can release these in cell-free form either bound with some protein components or encapsulated with microvesicle particles, called exosomes. miRNAs are quite stable in the peripheral circulation and can be detected by high-throughput techniques like qRT-PCR, microarray, and sequencing. Intracellular miRNAs could modulate mRNA activity through target-specific binding and play a crucial role in intercellular communications. At a pathological level, changes in cellular homeostasis lead to the modulation of molecular function of cells; as a result, miRNA expression is deregulated. Deregulated miRNAs came out from cells and frequently circulate in extracellular body fluids as part of various human diseases. Most common aging-associated diseases are cardiovascular disease, cancer, arthritis, dementia, cataract, osteoporosis, diabetes, hypertension, and neurodegenerative diseases such as Alzheimers disease, Huntingtons disease, Parkinsons disease, and amyotrophic lateral sclerosis. Variation in the miRNA signature in a diseased peripheral circulatory system opens up a new avenue in the field of biomarker discovery. Here, we measure the biomarker potential of circulatory miRNAs in aging and various aging-related pathologies. However, further more confirmatory researches are needed to elaborate these findings at the translation level.


Journal of Alzheimer's Disease | 2018

Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer’s Disease

P. Hemachandra Reddy; Maria Manczak; Xiangling Yin; Mary Catherine Grady; Andrew Mitchell; Sahil Tonk; Chandra Sekhar Kuruva; J.S. Bhatti; Ramesh Kandimalla; Murali Vijayan; Subodh Kumar; Rui Wang; Jangampalli Adi Pradeepkiran; Gilbert Ogunmokun; Kavya Thamarai; Kandi Quesada; Annette Boles; Arubala P. Reddy

The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimers disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumins bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.


Progress in Molecular Biology and Translational Science | 2017

MicroRNAs, Aging, Cellular Senescence, and Alzheimer's Disease

P.H. Reddy; J. Williams; F. Smith; J.S. Bhatti; Subodh Kumar; Murali Vijayan; Ramesh Kandimalla; Chandra Sekhar Kuruva; Rui Wang; Maria Manczak; Xiangling Yin; Arubala P. Reddy

Aging is a normal process of living being. It has been reported that multiple cellular changes, including oxidative damage/mitochondrial dysfunction, telomere shortening, inflammation, may accelerate the aging process, leading to cellular senescence. These cellular changes induce age-related human diseases, including Alzheimers, Parkinsons, multiple sclerosis, amyotrophic lateral sclerosis, cardiovascular, cancer, and skin diseases. Changes in somatic and germ-line DNA and epigenetics are reported to play large roles in accelerating the onset of human diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent discoveries in molecular biology have revealed that microRNAs (miRNAs) are potential indicators of aging, cellular senescence, and Alzheimers disease (AD). The purpose of our chapter is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging, cellular senescence, and AD. This chapter also critically evaluates miRNA-based therapeutic drug targets for aging and age-related diseases, particularly Alzheimers.


Human Molecular Genetics | 2018

Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease

P. Hemachandra Reddy; Xiangling Yin; Maria Manczak; Subodh Kumar; Jangampalli Adi Pradeepkiran; Murali Vijayan; Arubala P. Reddy

The purpose of our study was to determine the toxic effects of hippocampal mutant APP (mAPP) and amyloid beta (Aβ) in human mAPP complementary DNA (cDNA) transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimers disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative reverse transcriptase-polymerase chain reaction, immunoblotting & immunofluorescence and transmission electron microscopy, we assessed messenger RNA (mRNA) and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial adenosine triphosphate. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Drp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mAPP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mAPP hippocampal cells. These observations strongly suggest that accumulation of mAPP and Aβ causes mitochondrial, synaptic and autophagy/mitophagy abnormalities in hippocampal neurons, leading to neuronal dysfunction.


Progress in Molecular Biology and Translational Science | 2017

Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders

J.S. Bhatti; Subodh Kumar; Murali Vijayan; G.K. Bhatti; P.H. Reddy

Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.


Human Molecular Genetics | 2018

Identification of novel circulatory microRNA signatures linked to patients with ischemic stroke

Murali Vijayan; Subodh Kumar; Xiangling Yin; Dila Zafer; Vishal Chanana; Pelin Cengiz; P. Hemachandra Reddy

MicroRNAs (miRNAs) are involved in growth, development, and occurrence and progression of many diseases. MiRNA-mediated post-transcriptional regulation is poorly understood in vascular biology and pathology. The purpose of this is to determine circulatory miRNAs as early detectable peripheral biomarkers in patients with ischemic stroke (IS). MiRNAs expression levels were measured in IS serum samples and healthy controls using Illumina deep sequencing analysis and identified differentially expressed miRNAs. Differentially expressed miRNAs were further validated using SYBR-green-based quantitative real-time PCR (qRT-PCR) assay in postmortem IS brains, lymphoblastoid IS cell lines, oxygen and glucose deprivation/reoxygenation -treated human and mouse neuroblastoma cells, and mouse models of hypoxia and ischemia (HI)-induced stroke. A total of 4656 miRNAs were differentially expressed in IS serum samples relative to healthy controls. Out of 4656 miRNAs, 272 were found to be significantly deregulated in IS patients. Interestingly, we found several novel and previously unreported miRNAs in IS patients relative to healthy controls. Further analyses revealed that some candidate miRNAs and its target genes were involved in the regulation of the stroke. To the best of our knowledge, this is the first study identified potential novel candidate miRNAs in IS serum samples from the residents of rural West Texas. MiRNAs identified in this study could potentially be used as a biomarker and the development of novel therapeutic approaches for stroke. Further studies are necessary to better understand miRNAs-regulated stroke cellular changes.

Collaboration


Dive into the Murali Vijayan's collaboration.

Top Co-Authors

Avatar

Subodh Kumar

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

P. Hemachandra Reddy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

J.S. Bhatti

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Arubala P. Reddy

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

P.H. Reddy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Xiangling Yin

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Chandra Sekhar Kuruva

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Maria Manczak

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Ramesh Kandimalla

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

S. Ramesh Kumar

PSG College of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge