Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muriel H. Larauche is active.

Publication


Featured researches published by Muriel H. Larauche.


Gastroenterology | 2013

Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice.

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Muriel H. Larauche; Henri Duboc; Kristen A. Earle; Erica D. Sonnenburg; Jessica A. Ferreyra; Steven K. Higginbottom; Mulugeta Million; Yvette Taché; Pankaj J. Pasricha; Rob Knight; Gianrico Farrugia; Justin L. Sonnenburg

BACKGROUND & AIMS Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. METHODS We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). RESULTS Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. CONCLUSIONS Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.


Experimental Neurology | 2012

Stress and visceral pain: from animal models to clinical therapies

Muriel H. Larauche; Agata Mulak; Yvette Taché

Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-related visceral analgesia as established in the somatic pain field. Underlying mechanisms of stress-related visceral hypersensitivity may involve a combination of sensitization of primary afferents, central sensitization in response to input from the viscera and dysregulation of descending pathways that modulate spinal nociceptive transmission or analgesic response. Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF) signaling pathways. Experimental studies established that activation of brain and peripheral CRF receptor subtype 1 plays a primary role in the development of stress-related delayed visceral hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception using a broad range of evidence-based mind-body interventions and centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral stimuli and dampen visceral pain.


Neurogastroenterology and Motility | 2010

Guanylate cyclase C‐mediated antinociceptive effects of linaclotide in rodent models of visceral pain

Helene Eutamene; Sylvie Bradesi; Muriel H. Larauche; V. Theodorou; C. Beaufrand; G. Ohning; J. Fioramonti; M. Cohen; A. P. Bryant; Caroline B. Kurtz; Mark G. Currie; Emeran A. Mayer; Lionel Bueno

Background  Linaclotide is a novel, orally administered investigational drug currently in clinical development for the treatment of constipation‐predominant irritable bowel syndrome (IBS‐C) and chronic idiopathic constipation. Visceral hyperalgesia is a major pathophysiological mechanism in IBS‐C. Therefore, we investigated the anti‐nociceptive properties of linaclotide in rodent models of inflammatory and non‐inflammatory visceral pain and determined whether these pharmacological effects are linked to the activation of guanylate cyclase C (GC‐C).


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways.

Muriel H. Larauche; Guillaume Gourcerol; Lixin Wang; Karina Pambukchian; Stefan Brunnhuber; David W. Adelson; Jean Rivier; Mulugeta Million; Yvette Taché

Corticotropin-releasing factor (CRF) 1 receptor (CRF(1)) activation in the brain is a core pathway orchestrating the stress response. Anatomical data also support the existence of CRF signaling components within the colon. We investigated the colonic response to intraperitoneal (ip) injection of cortagine, a newly developed selective CRF(1) peptide agonist. Colonic motor function and visceral motor response (VMR) were monitored by using a modified miniaturized pressure transducer catheter in adult conscious male Sprague-Dawley rats and C57Bl/6 mice. Colonic permeability was monitored by the Evans blue method and myenteric neurons activation by Fos immunohistochemistry. Compared with vehicle, cortagine (10 microg/kg ip) significantly decreased the distal colonic transit time by 45% without affecting gastric transit, increased distal and transverse colonic contractility by 35.6 and 66.2%, respectively, and induced a 7.1-fold increase in defecation and watery diarrhea in 50% of rats during the first hour postinjection whereas intracerebroventricular (icv) cortagine (3 microg/rat) had lesser effects. Intraperitoneal (ip) cortagine also increased colonic permeability, activated proximal and distal colonic myenteric neurons, and induced visceral hypersensitivity to a second set of phasic colorectal distention (CRD). The CRF antagonist astressin (10 mug/kg ip) abolished ip cortagine-induced hyperalgesia whereas injected icv it had no effect. In mice, cortagine (30 microg/kg ip) stimulated defecation by 7.8-fold, induced 60% incidence of diarrhea, and increased VMR to CRD. Stresslike colonic alterations induced by ip cortagine in rats and mice through restricted activation of peripheral CRF(1) receptors support a role for peripheral CRF(1) signaling as the local arm of the colonic response to stress.


Brain Behavior and Immunity | 2010

Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: Role of corticotropin-releasing factor receptors

C. Kiank; Yvette Taché; Muriel H. Larauche

The interaction between gut inflammatory processes and stress is gaining increasing recognition. Corticotropin-releasing factor (CRF)-receptor activation in the brain is well established as a key signaling pathway initiating the various components of the stress response including in the viscera. In addition, a local CRF signaling system has been recently established in the gut. This review summarize the present knowledge on mechanisms through which both brain and gut CRF receptors modulate intestinal inflammatory processes and its relevance towards increased inflammatory bowel disease (IBD) activity and post-infectious irritable bowel syndrome (IBS) susceptibility induced by stress.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats

Muriel H. Larauche; Sylvie Bradesi; Mulugeta Million; Peter G. McLean; Yvette Taché; Emeran A. Mayer; James A. McRoberts

Visceral hypersensitivity has been implicated as an important pathophysiological mechanism in functional gastrointestinal disorders. In this study, we investigated whether the sustained visceral hyperalgesia induced by repeated psychological stress in rats involves the activation of CRF(1) signaling system using two different antagonists. Male Wistar rats were exposed to 10 consecutive days of water avoidance stress (WAS) or sham stress for 1 h/day, and the visceromotor response to phasic colorectal distension (CRD) was assessed before and after the stress period. Animals were injected subcutaneously with the brain penetrant CRF(1) antagonist, CP-154,526, acutely (30 min before the final CRD) or chronically (via osmotic minipump implanted subcutaneously, during stress) or with the peripherally restricted, nonselective CRF(1) and CRF(2) antagonist, astressin, chronically (15 min before each stress session). Repeated WAS induced visceral hypersensitivity to CRD at 40 and 60 mmHg. CP-154,526 injected acutely significantly reduced stress-induced visceral hyperalgesia at 40 mmHg but not at 60 mmHg. Chronic subcutaneous delivery of astressin reduced the stress-induced visceral hyperalgesia to baseline at all distension pressures. Interestingly, chronically administered CP-154,526 eliminated hyperalgesia and produced responses below baseline at 40 mmHg and 60 mmHg, indicating a hypoalgesic effect of the compound. These data support a major role for CRF(1) in both the development and maintenance of visceral hyperalgesia induced by repeated stress and indicate a possible role of peripheral CRF receptors in such mechanisms.


Stress | 2010

Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: Influence of surgery and postoperative single housing on visceromotor responses

Muriel H. Larauche; Guillaume Gourcerol; Mulugeta Million; David W. Adelson; Yvette Taché

Visceral pain modulation by chronic stress in mice has been little studied. Electromyography (EMG) recording of abdominal muscle contractions, as a proxy to the visceromotor response (VMR), requires electrode implantation and post-surgical single housing (SH) which could affect the VMR to stress. To test this hypothesis, male mice had electrode implantation surgery (S) plus SH, or no surgery and were group housed (NS-GH) or single housed (NS-SH) and exposed to either water avoidance stress (WAS, 1 h/day) or left undisturbed in their home cages for 10 days. The VMR to phasic ascending colorectal distension (CRD) was assessed before (basal) and 24 h after 10 days of WAS or no stress using a surgery-free method of intraluminal colonic pressure (ICP) recording (solid-state manometry). WAS heightened significantly the VMR to CRD at 30, 45, and 60 mmHg in S-SH vs. NS-GH, but not compared to NS-SH conscious mice. Compared to basal CRD, WAS increased VMR at 60 mmHg in the S-SH group and decreased it at 30–60 mmHg in NS-GH mice, while having no effect in NS-SH mice. The average defecation during the hour of repeated WAS over 10 days was 1.9 and 2.4 fold greater in S-SH vs. NS-GH and NS-SH mice, respectively. These data indicate that the combination of S-SH required for VMR monitoring with EMG is an important component of repeated WAS-induced post-stress visceral hypersensitivity and defecation in mice.


Gastroenterology | 2011

Activation of Corticotropin-Releasing Factor Receptor 2 Mediates the Colonic Motor Coping Response to Acute Stress in Rodents

Guillaume Gourcerol; S. Vincent Wu; Pu Qing Yuan; Hung Pham; Marcel Miampamba; Muriel H. Larauche; Paul M. Sanders; Tomofumi Amano; Agata Mulak; Eunok Im; Charalabos Pothoulakis; Jean Rivier; Yvette Taché; Mulugeta Million

BACKGROUND & AIMS Corticotropin-releasing factor receptor-1 (CRF(1)) mediates the stress-induced colonic motor activity. Less is known about the role of CRF(2) in the colonic response to stress. METHODS We studied colonic contractile activity in rats and CRF(2)-/-, CRF-overexpressing, and wild-type mice using still manometry; we analyzed defecation induced by acute partial-restraint stress (PRS), and/or intraperitoneal injection of CRF ligands. In rats, we monitored activation of the colonic longitudinal muscle myenteric plexus (LMMP) neurons and localization of CRF(1) and CRF(2) using immunohistochemical and immunoblot analyses. We measured phosphorylation of extracellular signal-regulated kinase 1/2 by CRF ligands in primary cultures of LMMP neurons (PC-LMMPn) and cyclic adenosine monophosphate (cAMP) production in human embryonic kidney-293 cells transfected with CRF(1) and/or CRF(2). RESULTS In rats, a selective agonist of CRF(2) (urocortin 2) reduced CRF-induced defecation (>50%), colonic contractile activity, and Fos expression in the colonic LMMP. A selective antagonist of CRF(2) (astressin(2)-B) increased these responses. Urocortin 2 reduced PRS-induced colonic contractile activity in wild-type and CRF-overexpressing mice, whereas disruption of CRF(2) increased PRS-induced colonic contractile activity and CRF-induced defecation. CRF(2) colocalized with CRF(1) and neuronal nitric oxide synthase in the rat colon, LMMP, and PC-LMMPn. CRF-induced phosphorylation of extracellular signal-regulated kinase in PC-LMMPn; this was inhibited or increased by a selective antagonist of CRF(1) (NBI35965) or astressin(2)-B, respectively. The half maximal effective concentration, EC(50), for the CRF-induced cAMP response was 8.6 nmol/L in human embryonic kidney-293 cells that express only CRF(1); this response was suppressed 10-fold in cells that express CRF(1) and CRF(2). CONCLUSIONS In colon tissues of rodents, CRF(2) activation inhibits CRF(1) signaling in myenteric neurons and the stress-induced colonic motor responses. Disruption of CRF(2) function impairs colonic coping responses to stress.


Brain Research | 2009

Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain

Lixin Wang; Vicente Martinez; Muriel H. Larauche; Yvette Taché

Little is known about the chemical coding of the brain neuronal circuitry activated by nociceptive signals of visceral origin. We characterized brain nuclei activated during isovolumetric phasic distension of the proximal colon (10 ml, 30 s on/off for 10 min) in conscious male rats, using Fos as a marker of neuronal activation and dual immunohistochemistry to visualize co-localization of Fos expression and oxytocin (OT), arginine-vasopressin (AVP), corticotrophin-releasing factor (CRF) or tyrosine hydroxylase (TH). Proximal colon distension, compared with sham distension, induced a robust increase in Fos-like immunoreactive (IR) neurons in the paraventricular nucleus (PVN), supraoptic nucleus (SON) and accessory neurosecretory nuclei of the hypothalamus, nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM), and to a lower extent, in the locus coeruleus (LC) and Barrington nucleus. Fos-IR neurons in the PVN after colon distension were identified in 81% of OT-IR, 18% AVP-IR and 16% CRF-IR neurons, while in the SON it represented 36% of OT-IR and 16% AVP-IR. Catecholaminergic cell groups in the pons (LC) and medulla (VLM, NTS) were also activated by proximal colon distension. Of the TH-IR neurons in VLM and NTS, 74% and 42% respectively were double labeled. These results indicate that colon distension stimulates OT-, AVP- and CRF-containing hypothalamic neurons, likely involved in the integration of colonic sensory information to modulate autonomic outflow and pain-related responses. Activation of medullary catecholaminergic centers might reflect the afferent and efferent limbs of the functional responses associated to visceral pain.


Neurogastroenterology and Motility | 2012

Visceral analgesia induced by acute and repeated water avoidance stress in rats: sex difference in opioid involvement

Muriel H. Larauche; Agata Mulak; Yong Sung Kim; Jennifer S. Labus; Mulugeta Million; Yvette Taché

Background  Chronic psychological stress‐induced alterations in visceral sensitivity have been predominantly assessed in male rodents. We investigated the effect of acute and repeated water avoidance stress (WAS) on the visceromotor response (VMR) to colorectal distension (CRD) and the role of opioids in male and cycling female Wistar rats using a novel non‐invasive manometric technique.

Collaboration


Dive into the Muriel H. Larauche's collaboration.

Top Co-Authors

Avatar

Yvette Taché

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mandy Biraud

University of California

View shared research outputs
Top Co-Authors

Avatar

Pu-Qing Yuan

University of California

View shared research outputs
Top Co-Authors

Avatar

Agata Mulak

University of California

View shared research outputs
Top Co-Authors

Avatar

Lixin Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jean Rivier

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Nabila Moussaoui

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph R. Pisegna

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge