Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvette Taché is active.

Publication


Featured researches published by Yvette Taché.


Neuroscience Letters | 2002

Peripheral ghrelin selectively increases Fos expression in neuropeptide Y – synthesizing neurons in mouse hypothalamic arcuate nucleus

Lixin Wang; David H Saint-Pierre; Yvette Taché

Ghrelin, a peptide isolated from the rat stomach, is the endogenous ligand of the growth hormone-secretagogue receptor and also known to have orexigenic effect. We examined the influence of intraperitoneal (i.p.) injection of ghrelin on food intake and brain neuronal activity in freely fed mice. Ghrelin (3, 10 or 30 microg/mouse) dose-dependently increased food intake by 0.8-, 1.6- and 2.6-fold, respectively, at 30 min post injection. Ghrelin (10 microg/mouse) induces Fos expression selectively in the ventromedial part of the hypothalamic arcuate nucleus (Arc). No change in Fos expression was observed in other hypothalamic and hindbrain nuclei. About 90% of the Fos-positive neurons in the Arc expressed neuropeptide Y (NPY) messenger RNA. These data indicate that NPY neurons in the Arc are likely the primary target mediating i.p. ghrelin induced orexigenic effect.


Journal of Clinical Investigation | 2007

Corticotropin-releasing factor receptors and stress-related alterations of gut motor function

Yvette Taché; Bruno Bonaz

Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointestinal system. We also examine how these mechanisms translate into the development of new approaches for irritable bowel syndrome, a multifactorial disorder for which stress has been implicated in the pathophysiology.


Neurogastroenterology and Motility | 2004

Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function.

Yvette Taché; M. H. Perdue

Central corticotrophin releasing‐factor (CRF) signalling pathways are involved in the endocrine, behavioural and visceral responses to stress. Recent studies indicate that peripheral CRF‐related mechanisms also contribute to stress‐induced changes in gut motility and intestinal mucosal function. Peripheral injection of CRF or urocortin inhibits gastric emptying and motility through interaction with CRF2 receptors and stimulates colonic transit, motility, Fos expression in myenteric neurones and defecation through activation of CRF1 receptors. With regard to intestinal epithelial cell function, intraperitoneal CRF increases ion secretion and mucosal permeability to macromolecules. The motility and mucosal changes induced by peripheral CRF mimic those induced by acute stress. In addition, CRF receptor antagonists given peripherally prevent acute restraint and water avoidance stress‐induced delayed gastric emptying, stimulation of colonic motor function and mucosal permeability. Similarly, early trauma enhanced intestinal mucosal dysfunction to an acute stressor in adult rats and the response is prevented by peripheral injection of CRF antagonist. Chronic psychological stress results in reduced host defence and initiates intestinal inflammation through mast cell‐dependent mechanisms. These findings provide convergent evidence that activation of peripheral CRF receptors and mast cells are important mechanisms involved in stress‐related alterations of gut physiology.


Endocrinology | 2009

Identification and Characterization of Nesfatin-1 Immunoreactivity in Endocrine Cell Types of the Rat Gastric Oxyntic Mucosa

Andreas Stengel; Miriam Goebel; Iskandar Yakubov; Lixin Wang; Derrick Ryan Witcher; Tamer Coskun; Yvette Taché; George Sachs; Nils Lambrecht

Hypothalamic nesfatin-1, derived from the nucleobindin2 (NUCB2) precursor, inhibits nocturnal food intake and body weight gain in rats. Nesfatin-1 is able to cross the blood-brain barrier, suggesting a peripheral source of nesfatin-1. Many centrally acting food intake regulatory neuropeptides are also produced in the periphery, especially in the gastrointestinal tract. Therefore, we investigated the gene expression of NUCB2 and distribution of nesfatin-1-immunoreactive cells in the stomach. Microarray mRNA expression profiles in purified small endocrine cells of the gastric mucosa substantiated by quantitative RT-PCR showed significantly higher NUCB2 mRNA expression compared with brain and heart. Western blot confirmed the expression of NUCB2 protein and its transport into a secretory soluble fraction of gastric mucosal endocrine cell homogenates. Immunohistochemical colabeling for nesfatin-1 and ghrelin, histidine decarboxylase, or somatostatin revealed two subtypes of nesfatin-1-positive endocrine cells. Cells in the midportion of the glands coexpressed nesfatin-1 and ghrelin, whereas few cells in the glandular base coexpressed nesfatin-1 and somatostatin or histidine decarboxylase. High-resolution three-dimensional volume imaging revealed two separate populations of intracytoplasmic vesicles in these cells, one containing nesfatin-1 and the other ghrelin immunoreactivity. Microarray rat genome expression data of NUCB2 in small gastric endocrine cells confirmed by quantitative RT-PCR showed significant down-regulation of NUCB2 after 24 h fasting. In summary, NUCB2 mRNA expression as well as protein content is present in a specific subset of gastric endocrine cells, most of which coexpress ghrelin. NUCB2 gene expression is significantly regulated by nutritional status, suggesting a regulatory role of peripheral nesfatin-1 in energy homeostasis.


British Journal of Pharmacology | 2004

CRF1 receptor signaling pathways are involved in stress‐related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome

Yvette Taché; Vicente Martinez; Lixin Wang; Mulugeta Million

The characterization of corticotropin releasing factor (CRF) and, more recently, the discovery of additional CRF‐related ligands, urocortin 1, urocortin 2 and urocortin 3, the cloning of two distinct CRF receptor subtypes, 1 (CRF1) and 2 (CRF2), and the development of selective CRF receptor antagonists provided new insight to unravel the mechanisms of stress. Activation of brain CRF1 receptor signaling pathways is implicated in stress‐related endocrine response and the development of anxiety‐like behaviors. Compelling evidence in rodents showed also that both central and peripheral injection of CRF and urocortin 1 mimic acute stress‐induced colonic response (stimulation of motility, transit, defecation, mucus and watery secretion, increased ionic permeability and occurrence of diarrhea) in rodents. Central CRF enhances colorectal distention‐induced visceral pain in rats. Peripheral CRF reduced pain threshold to colonic distention and increased colonic motility in humans. Nonselective CRF1/CRF2 antagonists and selective CRF1 antagonists inhibit exogenous (central or peripheral) CRF‐ and acute stress‐induced activation of colonic myenteric neurons, stimulation of colonic motor function and visceral hyperalgesia while selective CRF2 antagonists have no effect. None of the CRF antagonists influence basal or postprandial colonic function in nonstressed animals. These findings implicate CRF1 receptors in stress‐related stimulation of colonic function and hypersensitivity to colorectal distention. Targeting CRF1‐dependent pathways may have potential benefit against stress or anxiety‐/depression‐related functional bowel disorders.


Annals of the New York Academy of Sciences | 1993

Role of CRF in Stress-Related Alterations of Gastric and Colonic Motor Functiona

Yvette Taché; Hubert Mönnikes; Bruno Bonaz; Jean Rivier

Major advances have been made in the understanding of the pathophysiology of stress-related alteration of gut function. A wealth of information indicates that CRF is involved in the central mechanisms by which stress inhibits gastric emptying while stimulating colonic motor function. CRF acts in the PVN to trigger both the inhibition of gastric emptying and the stimulation of colonic motor function in response to stress, in addition to previously established endocrine and behavioral responses. Preliminary evidence exists that CRF acts in the locus coeruleus to induce a selective stimulation of colonic transit without influencing gastric emptying. The central actions of CRF to alter gastric and colonic motor function are conveyed by autonomic pathways and are unrelated to the associated stimulation of pituitary hormone secretion. The demonstration that central CRF plays a role in mediating gastric stasis resulting from surgery, peritonitis or high levels of central interleukin-1 provides new insight into the mechanisms involved in gastric ileus induced postoperatively or by infectious disease. Likewise, the demonstration that CRF in the PVN and locus coeruleus induce the anxiogenic and colonic motor responses to stress and that colonic distention activates neurons in the locus coeruleus opens new avenues for the understanding of the pathogenesis of a subset of IBS patients with colonic hypersensitivity associated with psychopathological disturbance and diarrhea-predominant symptoms.


Endocrinology | 2009

Central Nesfatin-1 Reduces Dark-Phase Food Intake and Gastric Emptying in Rats: Differential Role of Corticotropin-Releasing Factor2 Receptor

Andreas Stengel; Miriam Goebel; Lixin Wang; Jean Rivier; Peter Kobelt; Hubert Mönnikes; Nils Lambrecht; Yvette Taché

Nesfatin-1, derived from nucleobindin2, is expressed in the hypothalamus and reported in one study to reduce food intake (FI) in rats. To characterize the central anorexigenic action of nesfatin-1 and whether gastric emptying (GE) is altered, we injected nesfatin-1 into the lateral brain ventricle (intracerebroventricular, icv) or fourth ventricle (4v) in chronically cannulated rats or into the cisterna magna (intracisternal, ic) under short anesthesia and compared with ip injection. Nesfatin-1 (0.05 microg/rat, icv) decreased 2-3 h and 3-6 h dark-phase FI by 87 and 45%, respectively, whereas ip administration (2 microg/rat) had no effect. The corticotropin-releasing factor (CRF)(1)/CRF(2) antagonist astressin-B or the CRF(2) antagonist astressin(2)-B abolished icv nesfatin-1s anorexigenic action, whereas an astressin(2)-B analog, devoid of CRF-receptor binding affinity, did not. Nesfatin-1 icv induced a dose-dependent reduction of GE by 26 and 43% that was not modified by icv astressin(2)-B. Nesfatin-1 into the 4v (0.05 microg/rat) or ic (0.5 microg/rat) decreased cumulative dark-phase FI by 29 and 60% at 1 h and by 41 and 37% between 3 and 5 h, respectively. This effect was neither altered by ic astressin(2)-B nor associated with changes in GE. Cholecystokinin (ip) induced Fos expression in 43% of nesfatin-1 neurons in the paraventricular hypothalamic nucleus and 24% of those in the nucleus tractus solitarius. These data indicate that nesfatin-1 acts centrally to reduce dark phase FI through CRF(2)-receptor-dependent pathways after forebrain injection and CRF(2)-receptor-independent pathways after hindbrain injection. Activation of nesfatin-1 neurons by cholecystokinin at sites regulating food intake may suggest a role in gut peptide satiation effect.


Gastroenterology | 2013

Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice.

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Muriel H. Larauche; Henri Duboc; Kristen A. Earle; Erica D. Sonnenburg; Jessica A. Ferreyra; Steven K. Higginbottom; Mulugeta Million; Yvette Taché; Pankaj J. Pasricha; Rob Knight; Gianrico Farrugia; Justin L. Sonnenburg

BACKGROUND & AIMS Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. METHODS We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). RESULTS Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. CONCLUSIONS Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.


The Journal of Physiology | 2004

Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice

Vicente Martinez; Lixin Wang; Jean Rivier; Dimitri E. Grigoriadis; Yvette Taché

Recently characterized selective agonists and developed antagonists for the corticotropin releasing factor (CRF) receptors are new tools to investigate stress‐related functional changes. The influence of mammalian CRF and related peptides injected intracerebroventricularly (i.c.v.) on gastric and colonic motility, and the CRF receptor subtypes involved and their role in colonic response to stress were studied in conscious mice. The CRF1/CRF2 agonists rat urocortin 1 (rUcn 1) and rat/human CRF (r/h CRF), the preferential CRF1 agonist ovine CRF (oCRF), and the CRF2 agonist mouse (m) Ucn 2, injected i.c.v. inhibited gastric emptying and stimulated distal colonic motor function (bead transit and defecation) while oCRF9–33OH (devoid of CRF receptor affinity) showed neither effects. mUcn 2 injected peripherally had no colonic effect. The selective CRF2 antagonist astressin2‐B (i.c.v.), at a 20 : 1 antagonist: agonist ratio, blocked i.c.v. r/hCRF and rUcn 1 induced inhibition of gastric transit and reduced that of mUcn 2, while the CRF1 antagonist NBI‐35965 had no effect. By contrast, the colonic motor stimulation induced by i.c.v. r/hCRF and rUcn 1 and 1h restraint stress were antagonized only by NBI‐35965 while stimulation induced by mUcn 2 was equally blocked by both antagonists. None of the CRF antagonists injected i.c.v. alone influenced gut transit. These data establish in mice that brain CRF1 receptors mediate the stimulation of colonic transit induced by central CRF, urocortins (1 and 2) and restraint stress, while CRF2 receptors mediate the inhibitory actions of these peptides on gastric transit.


Canadian Journal of Gastroenterology & Hepatology | 1999

Corticotropin-Releasing Factor and the Brain-Gut Motor Response to Stress

Yvette Taché; Vicente Martinez; Mulugeta Million; Jean Rivier

The characterization of corticotropin-releasing factor (CRF) and CRF receptors, and the development of specific CRF receptor antagonists selective for the receptor subtypes have paved the way to the understanding of the biochemical coding of stress-related alterations of gut motor function. Reports have consistently established that central administration of CRF acts in the brain to inhibit gastric emptying while stimulating colonic motor function through modulation of the vagal and sacral parasympathetic outflow in rodents. Endogenous CRF in the brain plays a role in mediating various forms of stressor-induced gastric stasis, including postoperative gastric ileus, and activates colonic transit and fecal excretion elicited by psychologically aversive or fearful stimuli. It is known that brain CRF is involved in the cross-talk between the immune and gastrointestinal systems because systemic or central administration of interleukin-1-beta delays gastric emptying while stimulating colonic motor activity through activation of CRF release in the brain. The paraventricular nucleus of the hypothalamus and the dorsal vagal complex are important sites of action for CRF to inhibit gastric motor function, while the paraventricular nucleus of the hypothalamus and the locus coeruleus complex are sites of action for CRF to stimulate colonic motor function. The inhibition of gastric emptying by CRF may be mediated by the interaction with the CRF2 receptors, while the anxiogenic and colonic motor responses may involve CRF1 receptors. Hypersecretion of CRF in the brain may contribute to the pathophysiology of stress-related exacerbation of irritable bowel syndrome.

Collaboration


Dive into the Yvette Taché's collaboration.

Top Co-Authors

Avatar

Lixin Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Rivier

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Pu-Qing Yuan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Goebel

University of California

View shared research outputs
Top Co-Authors

Avatar

Hong Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge