Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murilo S. Amaral is active.

Publication


Featured researches published by Murilo S. Amaral.


PLOS Genetics | 2013

The Intronic Long Noncoding RNA ANRASSF1 Recruits PRC2 to the RASSF1A Promoter, Reducing the Expression of RASSF1A and Increasing Cell Proliferation

Felipe C. Beckedorff; Ana C. Ayupe; Renan Crocci-Souza; Murilo S. Amaral; Helder I. Nakaya; Daniela T. Soltys; Carlos Frederico Martins Menck; Eduardo M. Reis; Sergio Verjovski-Almeida

The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5′-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.


Bioscience Reports | 2013

Long non-coding RNAs and their implications in cancer epigenetics.

Felipe C. Beckedorff; Murilo S. Amaral; Carlos DeOcesano-Pereira; Sergio Verjovski-Almeida

LncRNAs (long non-coding RNAs) have emerged as key molecular players in the regulation of gene expression in different biological processes. Their involvement in epigenetic processes includes the recruitment of histone-modifying enzymes and DNA methyltransferases, leading to the establishment of chromatin conformation patterns that ultimately result in the fine control of genes. Some of these genes are related to tumorigenesis and it is well documented that the misregulation of epigenetic marks leads to cancer. In this review, we highlight how some of the lncRNAs implicated in cancer are involved in the epigenetic control of gene expression. While very few lncRNAs have already been identified as players in determining the cancer-survival outcome in a number of different cancer types, for most of the lncRNAs associated with epigenetic regulation only their altered pattern of expression in cancer is demonstrated. Thanks to their tissue-specificity features, lncRNAs have already been proposed as diagnostic markers in specific cancer types. We envision the discovery of a wealth of novel spliced and unspliced intronic lncRNAs involved in epigenetic networks or in highly location-specific epigenetic control, which might be predominantly altered in specific cancer subtypes. We expect that the characterization of new lncRNA (long non-coding RNA)–protein and lncRNA–DNA interactions will contribute to the discovery of potential lncRNA targets for use in therapies against cancer.


Nucleic Acids Research | 2016

Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis

Carlos DeOcesano-Pereira; Murilo S. Amaral; Kleber S. Parreira; Ana C. Ayupe; Jacqueline F. Jacysyn; Gustavo P. Amarante-Mendes; Eduardo M. Reis; Sergio Verjovski-Almeida

BCL-X mRNA alternative splicing generates pro-apoptotic BCL-XS or anti-apoptotic BCL-XL gene products and the mechanism that regulates splice shifting is incompletely understood. We identified and characterized a long non-coding RNA (lncRNA) named INXS, transcribed from the opposite genomic strand of BCL-X, that was 5- to 9-fold less abundant in tumor cell lines from kidney, liver, breast and prostate and in kidney tumor tissues compared with non-tumors. INXS is an unspliced 1903 nt-long RNA, is transcribed by RNA polymerase II, 5′-capped, nuclear enriched and binds Sam68 splicing-modulator. Three apoptosis-inducing agents increased INXS lncRNA endogenous expression in the 786-O kidney tumor cell line, increased BCL-XS/BCL-XL mRNA ratio and activated caspases 3, 7 and 9. These effects were abrogated in the presence of INXS knockdown. Similarly, ectopic INXS overexpression caused a shift in splicing toward BCL-XS and activation of caspases, thus leading to apoptosis. BCL-XS protein accumulation was detected upon INXS overexpression. In a mouse xenograft model, intra-tumor injections of an INXS-expressing plasmid caused a marked reduction in tumor weight, and an increase in BCL-XS isoform, as determined in the excised tumors. We revealed an endogenous lncRNA that induces apoptosis, suggesting that INXS is a possible target to be explored in cancer therapies.


PLOS Neglected Tropical Diseases | 2015

Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq

Letícia Anderson; Murilo S. Amaral; Felipe C. Beckedorff; Lucas F. Silva; Bianca Dazzani; Katia C. Oliveira; Giulliana T. Almeida; Monete Rajão Gomes; David S. Pires; João C. Setubal; Ricardo DeMarco; Sergio Verjovski-Almeida

Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search- and download-tool (http://schistosoma.usp.br/). This database provides new ways to explore the schistosome genome and transcriptome and will facilitate molecular research on this important parasite.


Experimental Parasitology | 2012

Exploring the Schistosoma mansoni adult male transcriptome using RNA-seq

Giulliana T. Almeida; Murilo S. Amaral; Felipe C. Beckedorff; João Paulo Kitajima; Ricardo DeMarco; Sergio Verjovski-Almeida

Schistosoma mansoni is one of the agents of schistosomiasis, a chronic and debilitating disease. Here we present a transcriptome-wide characterization of adult S. mansoni males by high-throughput RNA-sequencing. We obtained 1,620,432 high-quality ESTs from a directional strand-specific cDNA library, resulting in a 26% higher coverage of genome bases than that of the public ESTs available at NCBI. With a 15×-deep coverage of transcribed genomic regions, our data were able to (i) confirm for the first time 990 predictions without previous evidence of transcription; (ii) correct gene predictions; (iii) discover 989 and 1196 RNA-seq contigs that map to intergenic and intronic genomic regions, respectively, where no gene had been predicted before. These contigs could represent new protein-coding genes or non-coding RNAs (ncRNAs). Interestingly, we identified 11 novel Micro-exon genes (MEGs). These data reveal new features of the S. mansoni transcriptional landscape and significantly advance our understanding of the parasite transcriptome.


Scientific Reports | 2017

The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages

Elton J. R. Vasconcelos; Lucas F. daSilva; David S. Pires; Guilherme M. Lavezzo; Adriana S. A. Pereira; Murilo S. Amaral; Sergio Verjovski-Almeida

Next Generation Sequencing (NGS) strategies, like RNA-Seq, have revealed the transcription of a wide variety of long non-coding RNAs (lncRNAs) in the genomes of several organisms. In the present work we assessed the lncRNAs complement of Schistosoma mansoni, the blood fluke that causes schistosomiasis, ranked among the most prevalent parasitic diseases worldwide. We focused on the long intergenic/intervening ncRNAs (lincRNAs), hidden within the large amount of information obtained through RNA-Seq in S. mansoni (88 libraries). Our computational pipeline identified 7029 canonically-spliced putative lincRNA genes on 2596 genomic loci (at an average 2.7 isoforms per lincRNA locus), as well as 402 spliced lncRNAs that are antisense to protein-coding (PC) genes. Hundreds of lincRNAs showed traits for being functional, such as the presence of epigenetic marks at their transcription start sites, evolutionary conservation among other schistosome species and differential expression across five different life-cycle stages of the parasite. Real-time qPCR has confirmed the differential life-cycle stage expression of a set of selected lincRNAs. We have built PC gene and lincRNA co-expression networks, unraveling key biological processes where lincRNAs might be involved during parasite development. This is the first report of a large-scale identification and structural annotation of lncRNAs in the S. mansoni genome.


PLOS Neglected Tropical Diseases | 2018

Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism.

Adriana S. A. Pereira; Murilo S. Amaral; Elton J. R. Vasconcelos; David S. Pires; Huma Asif; Lucas F. daSilva; David A. Morales-Vicente; Vitor Coutinho Carneiro; Claudia B. Angeli; Giuseppe Palmisano; Marcelo Rosado Fantappié; Raymond J. Pierce; João C. Setubal; Sergio Verjovski-Almeida

Background The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. Methodology/Principal findings Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. Conclusions/Significance The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents.


Nature Communications | 2018

Publisher Correction: Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells

Luiz Carlos Caires-Júnior; Ernesto Goulart; Uirá Souto Melo; Bruno Henrique Silva Araujo; Lucas Alvizi; Alessandra Soares-Schanoski; Danyllo Felipe de Oliveira; Gerson Shigeru Kobayashi; Karina Griesi-Oliveira; Camila Manso Musso; Murilo S. Amaral; Lucas F. daSilva; Renato Mancini Astray; Sandra Fernanda Suárez-Patiño; Daniella C. Ventini; Sérgio Gomes da Silva; Guilherme Lopes Yamamoto; Suzana Ezquina; Michel Satya Naslavsky; Kayque Alves Telles-Silva; Karina Weinmann; Vanessa van der Linden; Hélio van der Linden; João Ricardo Mendes de Oliveira; Nivia Maria Rodrigues Arrais; Adriana Melo; Thalita Figueiredo; Silvana Sidney Costa Santos; Joanna Goes Castro Meira; Saulo Duarte Passos

The original PDF version of this Article contained errors in the spelling of Luiz Carlos Caires-Júnior, Uirá Souto Melo, Bruno Henrique Silva Araujo, Alessandra Soares-Schanoski, Murilo Sena Amaral, Kayque Alves Telles-Silva, Vanessa van der Linden, Helio van der Linden, João Ricardo Mendes de Oliveira, Nivia Maria Rodrigues Arrais, Joanna Goes Castro Meira, Ana Jovina Barreto Bispo, Esper Abrão Cavalheiro, and Robert Andreata-Santos, which were incorrectly given as Luiz Carlos de Caires Jr., UiráSouto Melo, Bruno Silva Henrique Araujo, Alessandra Soares Schanoski, MuriloSena Amaral, Kayque Telles Alves Silva, Vanessa Van der Linden, Helio Van der Linden, João Mendes Ricardo de Oliveira, Nivia Rodrigues Maria Arrais, Joanna Castro Goes Meira, Ana JovinaBarreto Bispo, EsperAbrão Cavalheiro, and Robert Andreata Santos. Furthermore, in both the PDF and HTML versions of the Article, the top panel of Fig. 3e was incorrectly labeled ‘10608-1’ and should have been ‘10608-4’, and financial support from CAPES and DECIT-MS was inadvertently omitted from the Acknowledgements section. These errors have now been corrected in both the PDF and HTML versions of the Article.


Frontiers in Genetics | 2018

Chromatin Landscape Distinguishes the Genomic Loci of Hundreds of Androgen-Receptor-Associated LincRNAs From the Loci of Non-associated LincRNAs

Lucas F. daSilva; Felipe C. Beckedorff; Ana C. Ayupe; Murilo S. Amaral; Vinícius Mesel; Alexandre Videira; Eduardo M. Reis; João C. Setubal; Sergio Verjovski-Almeida

Cell signaling events triggered by androgen hormone in prostate cells is dependent on activation of the androgen receptor (AR) transcription factor. Androgen hormone binding to AR promotes its displacement from the cytoplasm to the nucleus and AR binding to DNA motifs, thus inducing activatory and inhibitory transcriptional programs through a complex regulatory mechanism not yet fully understood. In this work, we performed RNA-seq deep-sequencing of LNCaP prostate cancer cells and found over 7000 expressed long intergenic non-coding RNAs (lincRNAs), of which ∼4000 are novel lincRNAs, and 258 lincRNAs have their expression activated by androgen. Immunoprecipitation of AR, followed by large-scale sequencing of co-immunoprecipitated RNAs (RIP-Seq) has identified in the LNCaP cell line a total of 619 lincRNAs that were significantly enriched (FDR < 10%, DESeq2) in the anti-Androgen Receptor (antiAR) fraction in relation to the control fraction (non-specific IgG), and we named them Androgen-Receptor-Associated lincRNAs (ARA-lincRNAs). A genome-wide analysis showed that protein-coding gene neighbors to ARA-lincRNAs had a significantly higher androgen-induced change in expression than protein-coding genes neighboring lincRNAs not associated to AR. To find relevant epigenetic signatures enriched at the ARA-lincRNAs’ transcription start sites (TSSs) we used a machine learning approach and identified that the ARA-lincRNA genomic loci in LNCaP cells are significantly enriched with epigenetic marks that are characteristic of in cis enhancer RNA regulators, and that the H3K27ac mark of active enhancers is conspicuously enriched at the TSS of ARA-lincRNAs adjacent to androgen-activated protein-coding genes. In addition, LNCaP topologically associating domains (TADs) that comprise chromatin regions with ARA-lincRNAs exhibit transcription factor contents, epigenetic marks and gene transcriptional activities that are significantly different from TADs not containing ARA-lincRNAs. This work highlights the possible involvement of hundreds of lincRNAs working in synergy with the AR on the genome-wide androgen-induced gene regulatory program in prostate cells.


Database | 2018

Atlas of Schistosoma mansoni long non-coding RNAs and their expression correlation to protein-coding genes

Elton J. R. Vasconcelos; Vinícius Mesel; Lucas F. daSilva; David S. Pires; Guilherme M. Lavezzo; Adriana S. A. Pereira; Murilo S. Amaral; Sergio Verjovski-Almeida

Abstract Long non-coding RNAs (lncRNAs) have been widely discovered in several organisms with the help of high-throughput RNA sequencing. LncRNAs are over 200 nt-long transcripts that do not have protein-coding (PC) potential, having been reported in model organisms to act mainly on the overall control of PC gene expression. Little is known about the functionality of lncRNAs in evolutionarily ancient non-model metazoan organisms, like Schistosoma mansoni, the parasite that causes schistosomiasis, one of the most prevalent infectious-parasitic diseases worldwide. In a recent transcriptomics effort, we identified thousands of S. mansoni lncRNAs predicted to be functional along the course of parasite development. Here, we present an online catalog of each of the S. mansoni lncRNAs whose expression is correlated to PC genes along the parasite life-cycle, which can be conveniently browsed and downloaded through a new web resource http://verjolab.usp.br. We also provide access now to navigation on the co-expression networks disclosed in our previous publication, where we correlated mRNAs and lncRNAs transcriptional patterns across five life-cycle stages/forms, pinpointing biological processes where lncRNAs might act upon. Database URL: http://verjolab.usp.br

Collaboration


Dive into the Murilo S. Amaral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana C. Ayupe

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge