Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Verjovski-Almeida is active.

Publication


Featured researches published by Sergio Verjovski-Almeida.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature Genetics | 2003

Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni

Sergio Verjovski-Almeida; Ricardo DeMarco; Elizabeth A. L. Martins; Pedro Edson Moreira Guimarães; Elida B. Ojopi; Apuã C.M. Paquola; João Paulo Piazza; Milton Yutaka Nishiyama; João Paulo Kitajima; Rachel Adamson; Peter D. Ashton; Maria F. Bonaldo; Patricia S. Coulson; Gary P. Dillon; Leonardo P. Farias; Sheila P. Gregório; Paulo L. Ho; Ricardo A. Leite; L. Cosme C. Malaquias; Regina Célia Pereira Marques; Patricia A. Miyasato; Ana L. T. O. Nascimento; Fernanda Pires Ohlweiler; Eduardo M. Reis; Marcela A. Ribeiro; Renata G. Sá; Gaëlle C. Stukart; M. Bento Soares; Cybele Gargioni; Toshie Kawano

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Journal of Bacteriology | 2004

Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis

Ana L. T. O. Nascimento; A. I. Ko; Elizabeth A. L. Martins; Claudia B. Monteiro-Vitorello; Paulo Lee Ho; David A. Haake; Sergio Verjovski-Almeida; Rudy A. Hartskeerl; Marilis V. Marques; Marina Oliveira; Carlos Frederico Martins Menck; Luciana C.C. Leite; Helaine Carrer; Luiz Lehmann Coutinho; W. M. Degrave; Odir A. Dellagostin; Emer S. Ferro; Maria Inês Tiraboschi Ferro; Luiz Roberto Furlan; Marcia Gamberini; Éder A. Giglioti; Aristóteles Góes-Neto; Gustavo H. Goldman; Maria Helena S. Goldman; Ricardo Harakava; S. M. B Jerônimo; I. L. M. Junqueira-de-Azevedo; Edna T. Kimura; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos

Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organisms complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.


Brazilian Journal of Medical and Biological Research | 2004

Genome features of Leptospira interrogans serovar Copenhageni

Ana L. T. O. Nascimento; Sergio Verjovski-Almeida; M. A. Van Sluys; Claudia B. Monteiro-Vitorello; Luis Eduardo Aranha Camargo; Luciano Antonio Digiampietri; R.A. Harstkeerl; Paulo Lee Ho; Marilis V. Marques; Mariana C. Oliveira; João C. Setubal; David A. Haake; Elizabeth A. L. Martins

We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organisms ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.


Genomics | 2009

Long intronic noncoding RNA transcription: Expression noise or expression choice?

Rodrigo Louro; Anna S. Smirnova; Sergio Verjovski-Almeida

Recently, it was discovered that non-protein-coding RNAs (ncRNAs) represent the majority of the human transcripts. Regulatory role of many classes of ncRNAs is broadly recognized; however, long intronic ncRNAs have received little attention. In the past few years, evidence that intronic regions are key sources of regulatory ncRNAs has first appeared. Here we present an updated vision of the intronic ncRNA world, giving special attention to the long intronic ncRNAs. We summarize aspects of their expression pattern, evolutionary constraints, biogenesis, and responsiveness to physiological stimuli, and postulate their mechanisms of action. Deciphering natures choice of different types of messages conveyed by ncRNAs will shed light on the RNA-based layer of regulatory processes in eukaryotic cells.


PLOS Neglected Tropical Diseases | 2008

Schistosoma mansoni Tegument Protein Sm29 Is Able to Induce a Th1-Type of Immune Response and Protection against Parasite Infection

Fernanda C. Cardoso; Gilson Costa Macedo; Elisandra Gava; Gregory T. Kitten; Vitor Luís Tenório Mati; Alan Lane de Melo; Marcelo Vidigal Caliari; Giulliana T. Almeida; Thiago M. Venancio; Sergio Verjovski-Almeida; Sergio C. Oliveira

Background Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-γ, TNF-α and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.


Oncogene | 2004

Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer

Eduardo M. Reis; Helder I. Nakaya; Rodrigo Louro; F. Canavez; Áurea V F Flatschart; Giulliana T. Almeida; Camila M Egidio; Apuã C.M. Paquola; Abimael A. Machado; Fernanda Festa; Denise Yamamoto; Renato Alvarenga; Camille C. Caldeira da Silva; Glauber Costa Brito; Sérgio D Simon; Carlos Alberto Moreira-Filho; Katia R. M. Leite; Luiz H. Camara-Lopes; Franz S. de Campos; Etel Gimba; Giselle M Vignal; Mari Cleide Sogayar; Marcello A. Barcinski; Aline M. da Silva; Sergio Verjovski-Almeida

A large fraction of transcripts are expressed antisense to introns of known genes in the human genome. Here we show the construction and use of a cDNA microarray platform enriched in intronic transcripts to assess their biological relevance in pathological conditions. To validate the approach, prostate cancer was used as a model, and 27 patient tumor samples with Gleason scores ranging from 5 to 10 were analyzed. We find that a considerably higher fraction (6.6%, [23/346]) of intronic transcripts are significantly correlated (P⩽0.001) to the degree of prostate tumor differentiation (Gleason score) when compared to transcripts from unannotated genomic regions (1%, [6/539]) or from exons of known genes (2%, [27/1369]). Among the top twelve transcripts most correlated to tumor differentiation, six are antisense intronic messages as shown by orientation-specific RT-PCR or Northern blot analysis with strand-specific riboprobe. Orientation-specific real-time RT–PCR with six tumor samples, confirmed the correlation (P=0.024) between the low/high degrees of tumor differentiation and antisense intronic RASSF1 transcript levels. The need to use intron arrays to reveal the transcriptome profile of antisense intronic RNA in cancer has clearly emerged.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

Anamaria A. Camargo; Helena P.B. Samaia; Emmanuel Dias-Neto; Daniel F. Simão; Italo A. Migotto; Marcelo R. S. Briones; Fernando Ferreira Costa; Maria Aparecida Nagai; Sergio Verjovski-Almeida; Marco A. Zago; Luís Eduardo Coelho Andrade; Helaine Carrer; Enilza M. Espreafico; Angelita Habr-Gama; Daniel Giannella-Neto; Gustavo H. Goldman; Arthur Gruber; Christine Hackel; Edna T. Kimura; Rui M. B. Maciel; Suely Kazue Nagahashi Marie; Elizabeth A. L. Martins; Marina P. Nobrega; Maria Luisa Paçó-Larson; Maria Inês de Moura Campos Pardini; Gonçalo Amarante Guimarães Pereira; João Bosco Pesquero; Vanderlei Rodrigues; Silvia Regina Rogatto; Ismael D.C.G. Silva

Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription–PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning.


PLOS Pathogens | 2006

Schistosoma mansoni TGF-β Receptor II: Role in Host Ligand-Induced Regulation of a Schistosome Target Gene

Ahmed Osman; Edward G. Niles; Sergio Verjovski-Almeida; Philip T. LoVerde

Members of transforming growth factor-beta (TGF-β) superfamily play pivotal roles in development in multicellular organisms. We report the functional characterization of the Schistosoma mansoni type II receptor (SmTβRII). Mining of the S. mansoni expressed sequence tag (EST) database identified an EST clone that shows homology to the kinase domain of type II receptors from different species. The amplified EST sequence was used as a probe to isolate a cDNA clone spanning the entire coding region of a type II serine/threonine kinase receptor. The interaction of SmTβRII with SmTβRI was elucidated and shown to be dependent on TGF-β ligand binding. Furthermore, in the presence of human TGF-β1, SmTβRII was able to activate SmTβRI, which in turn activated SmSmad2 and promoted its interaction with SmSmad4, proving the transfer of the signal from the receptor complex to the Smad proteins. Gynaecophoral canal protein (GCP), whose expression in male worms is limited to the gynaecophoric canal, was identified as a potential TGF-β target gene in schistosomes. Knocking down the expression of SmTβRII using short interfering RNA molecules (siRNA) resulted in a concomitant reduction in the expression of GCP. These data provide evidence for the direct involvement of SmTβRII in mediating TGF-β–induced activation of the TGF-β target gene, SmGCP, within schistosome parasites. The results also provide additional evidence for a role for the TGF-β signaling pathway in male-induced female reproductive development.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

Helena Brentani; Otavia L. Caballero; Anamaria A. Camargo; Aline M. da Silva; Wilson A. Silva; Emmanuel Dias Neto; Marco Grivet; Arthur Gruber; Pedro Edson Moreira Guimarães; Winston Hide; Christian Iseli; C. Victor Jongeneel; Janet Kelso; Maria Aparecida Nagai; Elida B. Ojopi; Elisson Osório; Eduardo M. Reis; Gregory J. Riggins; Andrew J.G. Simpson; Sandro J. de Souza; Brian J. Stevenson; Robert L. Strausberg; Eloiza Helena Tajara; Sergio Verjovski-Almeida

Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define ≈23,500 genes, of which only ≈1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.

Collaboration


Dive into the Sergio Verjovski-Almeida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge