Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mustafa Syed is active.

Publication


Featured researches published by Mustafa Syed.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Nucleic Acids Research | 2006

PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways

Natalia Maltsev; Elizabeth M. Glass; Dinanath Sulakhe; Alexis Rodriguez; Mustafa Syed; Tanuja Bompada; Yi Zhang; Mark D'Souza

The PUMA2 system (available at ) is an interactive, integrated bioinformatics environment for high-throughput genetic sequence analysis and metabolic reconstructions from sequence data. PUMA2 provides a framework for comparative and evolutionary analysis of genomic data and metabolic networks in the context of taxonomic and phenotypic information. Grid infrastructure is used to perform computationally intensive tasks. PUMA2 currently contains precomputed analysis of 213 prokaryotic, 22 eukaryotic, 650 mitochondrial and 1493 viral genomes and automated metabolic reconstructions for >200 organisms. Genomic data is annotated with information integrated from >20 sequence, structural and metabolic databases and ontologies. PUMA2 supports both automated and interactive expert-driven annotation of genomes, using a variety of publicly available bioinformatics tools. It also contains a suite of unique PUMA2 tools for automated assignment of gene function, evolutionary analysis of protein families and comparative analysis of metabolic pathways. PUMA2 allows users to submit batch sequence data for automated functional analysis and construction of metabolic models. The results of these analyses are made available to the users in the PUMA2 environment for further interactive sequence analysis and annotation.


Nucleic Acids Research | 2007

Sentra: a database of signal transduction proteins for comparative genome analysis

Mark D'Souza; Elizabeth M. Glass; Mustafa Syed; Yi Zhang; Alexis Rodriguez; Natalia Maltsev; Michael Y. Galperin

Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentras infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.


Nucleic Acids Research | 2012

Article Withdrawn: GNARE: A Grid-based Server for the Analysis of User Submitted Genomes

Elizabeth M. Glass; Alexis Rodriguez; Margaret Romine; Yi Zhang; Mark D'Souza; Dinanath Sulakhe; Mustafa Syed; Natalia Maltsev

GeNome Analysis Research Environment (GNARE) is a bioinformatics server that supports both automated and interactive expert-driven analysis of user-submitted genomes and metagenomes. These analyses include gene function prediction and development of organism-specific metabolic reconstructions from sequence data. GNARE provides a framework for comparative and evolutionary analysis as well as annotation of genomes and metabolic networks in the context of phenotypic and taxonomic information. Results of analyses and metabolic models are visualized and extensively annotated with information from public databases. GNARE uses automated workflows and a Gridbased computational backend to perform highthroughput analysis of genomes. This use of distributed computing allows the analysis of an average-sized prokaryotic genome in less than 5 h. GNARE is available at http://compbio.mcs.anl. gov/gnare/.


Nature Biotechnology | 2018

KBase: The United States Department of Energy Systems Biology Knowledgebase

Adam P. Arkin; Robert W. Cottingham; Christopher S. Henry; Nomi L. Harris; Rick Stevens; Sergei Maslov; Paramvir Dehal; Doreen Ware; Fernando Perez; Shane Canon; Michael W Sneddon; Matthew L Henderson; William J Riehl; Dan Murphy-Olson; Stephen Chan; Roy T Kamimura; Sunita Kumari; Meghan M Drake; Thomas Brettin; Elizabeth M. Glass; Dylan Chivian; Dan Gunter; David J. Weston; Benjamin H Allen; Jason K. Baumohl; Aaron A. Best; Ben Bowen; Steven E. Brenner; Christopher C Bun; John-Marc Chandonia

Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T; Kumari, Sunita; Drake, Meghan M; Brettin, Thomas S; Glass, Elizabeth M; Chivian, Dylan; Gunter, Dan; Weston, David J; Allen, Benjamin H; Baumohl, Jason; Best, Aaron A; Bowen, Ben; Brenner, Steven E; Bun, Christopher C; Chandonia, John-Marc; Chia, Jer-Ming; Colasanti, Ric; Conrad, Neal; Davis, James J; Davison, Brian H; DeJongh, Matthew; Devoid, Scott; Dietrich, Emily; Dubchak, Inna; Edirisinghe, Janaka N; Fang, Gang; Faria, Jose P; Frybarger, Paul M; Gerlach, Wolfgang; Gerstein, Mark; Greiner, Annette; Gurtowski, James; Haun, Holly L; He, Fei; Jain, Rashmi; Joachimiak, Marcin P; Keegan, Kevin P; Kondo, Shinnosuke; Kumar, Vivek; Land, Miriam L; Meyer, Folker; Mills, Marissa; Novichkov, Pavel S; Oh, Taeyun; Olsen, Gary J; Olson, Robert; Parrello, Bruce; Pasternak, Shiran; Pearson, Erik; Poon, Sarah S; Price, Gavin A; Ramakrishnan, Srividya; Ranjan, Priya; Ronald, Pamela C; Schatz, Michael C; Seaver, Samuel MD; Shukla, Maulik; Sutormin, Roman A; Syed, Mustafa H; Thomason, James; Tintle, Nathan L; Wang, Daifeng; Xia, Fangfang; Yoo, Hyunseung; Yoo, Shinjae; Yu, Dantong


Nature Biotechnology | 2012

The BioPAX community standard for pathway data sharing (Nature Biotechnology (2010) 28, (935-942))

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

BioPAX (Biological Pathway Exchange) is a standard language to represent biological pathways at the molecular and cellular level. Its major use is to facilitate the exchange of pathway data (http://www.biopax.org). Pathway data captures our understanding of biological processes, but its rapid growth necessitates development of databases and computational tools to aid interpretation. However, the current fragmentation of pathway information across many databases with incompatible formats presents barriers to its effective use. BioPAX solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. BioPAX was created through a community process. Through BioPAX, millions of interactions organized into thousands of pathways across many organisms, from a growing number of sources, are available. Thus, large amounts of pathway data are available in a computable form to support visualization, analysis and biological discovery.


Archive | 2005

BioPAX - Biological Pathways Exchange Language Level 2, Version 1.0 Documentation

Gary D. Bader; Eric Brauner; Michael P. Cary; Kam D. Dahlquist; Emek Demir; Peter D'Eustachio; Ken Fukuda; Frank Gibbons; Marc Gillespie; Robert N. Goldberg; Chris Hogue; Michael Hucka; Geeta Joshi-Tope; David Kane; Peter D. Karp; Teri Klein; Christian Lemer; Joanne S. Luciano; Debbie Marks; Natalia Maltsev; Elizabeth Marland; Eric Neumann; Suzanne M. Paley; Jonathan Rees; Aviv Regev; Alan Ruttenberg; Andrey Rzhetsky; Chris Sander; Imran Shah; Andrea Splendiani


Nature Biotechnology | 2010

Corrigendum: The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur


Nature Biotechnology | 2010

The BioPAX community standard for pathway

Mustafa Syed


Nature Biotechnology | 2010

Erratum: Corrigendum: The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Collaboration


Dive into the Mustafa Syed's collaboration.

Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Geeta Joshi-Tope

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Imran Shah

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Joanne S. Luciano

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Fukuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Lemer

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl F. Schaefer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge