Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muthusamy Jayaraman is active.

Publication


Featured researches published by Muthusamy Jayaraman.


Nature Biotechnology | 2010

Rational design of cationic lipids for siRNA delivery

Sean C. Semple; Akin Akinc; Jianxin Chen; Ammen Sandhu; Barbara L. Mui; Connie K Cho; Dinah Sah; Derrick Stebbing; Erin J Crosley; Ed Yaworski; Ismail Hafez; J. Robert Dorkin; June Qin; Kieu Lam; Kallanthottathil G. Rajeev; Kim F. Wong; Lloyd Jeffs; Lubomir Nechev; Merete L. Eisenhardt; Muthusamy Jayaraman; Mikameh Kazem; Martin Maier; Masuna Srinivasulu; Michael J Weinstein; Qingmin Chen; Rene Alvarez; Scott Barros; Soma De; Sandra K. Klimuk; Todd Borland

We adopted a rational approach to design cationic lipids for use in formulations to deliver small interfering RNA (siRNA). Starting with the ionizable cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a key lipid component of stable nucleic acid lipid particles (SNALP) as a benchmark, we used the proposed in vivo mechanism of action of ionizable cationic lipids to guide the design of DLinDMA-based lipids with superior delivery capacity. The best-performing lipid recovered after screening (DLin-KC2-DMA) was formulated and characterized in SNALP and demonstrated to have in vivo activity at siRNA doses as low as 0.01 mg/kg in rodents and 0.1 mg/kg in nonhuman primates. To our knowledge, this represents a substantial improvement over previous reports of in vivo endogenous hepatic gene silencing.


Nature Biotechnology | 2008

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Akin Akinc; Andreas Zumbuehl; Michael Goldberg; Elizaveta S. Leshchiner; Valentina Busini; Naushad Hossain; Sergio Bacallado; David N. Nguyen; Jason Fuller; Rene Alvarez; Anna Borodovsky; Todd Borland; Rainer Constien; Antonin de Fougerolles; J. Robert Dorkin; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Matthias John; Victor Koteliansky; Muthiah Manoharan; Lubomir Nechev; June Qin; Timothy Racie; Denitza Raitcheva; Kallanthottathil G. Rajeev; Dinah Sah; Jürgen Soutschek; Ivanka Toudjarska; Hans-Peter Vornlocher; Tracy Zimmermann

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Nature Biotechnology | 2007

Mechanisms and optimization of in vivo delivery of lipophilic siRNAs

Christian Wolfrum; Shuanping Shi; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Gang Wang; Rajendra K. Pandey; Kallanthottathil G. Rajeev; Tomoko Nakayama; Esther Ndungo; Tracy Zimmermann; Victor Koteliansky; Muthiah Manoharan; Markus Stoffel

Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.

Maria Frank-Kamenetsky; Aldo Grefhorst; Norma N. Anderson; Timothy Racie; Birgit Bramlage; Akin Akinc; David Butler; Klaus Charisse; Robert Dorkin; Yupeng Fan; Christina Gamba-Vitalo; Philipp Hadwiger; Muthusamy Jayaraman; Matthias John; K. Narayanannair Jayaprakash; Martin Maier; Lubomir Nechev; Kallanthottathil G. Rajeev; Timothy Read; Ingo Röhl; Jürgen Soutschek; Pamela Tan; Jamie Wong; Gang Wang; Tracy Zimmermann; Antonin de Fougerolles; Hans Peter Vornlocher; Robert Langer; Daniel G. Anderson; Muthiah Manoharan

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50–70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5′-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.


Nature Nanotechnology | 2012

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.

Hyukjin Lee; Abigail K. R. Lytton-Jean; Yi Chen; Kevin Love; Angela I. Park; Emmanouil D. Karagiannis; Alfica Sehgal; William Querbes; Christopher Zurenko; Muthusamy Jayaraman; Chang G. Peng; Klaus Charisse; Anna Borodovsky; Muthiah Manoharan; Jessica S. Donahoe; Jessica Truelove; Matthias Nahrendorf; Robert Langer; Daniel G. Anderson

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).


Molecular Therapy | 2010

Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms

Akin Akinc; William Querbes; Soma De; June Qin; Maria Frank-Kamenetsky; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Kallanthottathil G. Rajeev; William Cantley; J. Robert Dorkin; James Butler; Liuliang Qin; Timothy Racie; Andrew Sprague; Eugenio Fava; Anja Zeigerer; Michael J. Hope; Marino Zerial; Dinah Sah; Kevin Fitzgerald; Mark Tracy; Muthiah Manoharan; Victor Koteliansky; Antonin de Fougerolles; Martin Maier

Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE-/- mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR-/-)-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE(-/-) mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR(-/-))-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.


Angewandte Chemie | 2012

Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo

Muthusamy Jayaraman; Steven M. Ansell; Barbara L. Mui; Ying K. Tam; Jianxin Chen; Xinyao Du; David Butler; Laxman Eltepu; Shigeo Matsuda; Jayaprakash K. Narayanannair; Kallanthottathil G. Rajeev; Ismail Hafez; Akin Akinc; Martin Maier; Mark Tracy; Pieter R. Cullis; Thomas D. Madden; Muthiah Manoharan; Michael J. Hope

Special (lipid) delivery: The role of the ionizable lipid pK(a) in the in vivo delivery of siRNA by lipid nanoparticles has been studied with a large number of head group modifications to the lipids. A tight correlation between the lipid pK(a) value and silencing of the mouse FVII gene (FVII ED(50) ) was found, with an optimal pK(a) range of 6.2-6.5. The most potent cationic lipid from this study has ED(50) levels around 0.005 mg kg(-1) in mice and less than 0.03 mg kg(-1) in non-human primates.


Molecular Therapy | 2009

Development of Lipidoid–siRNA Formulations for Systemic Delivery to the Liver

Akin Akinc; Michael Goldberg; June Qin; J. Robert Dorkin; Christina Gamba-Vitalo; Martin Maier; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Kallanthottathil G. Rajeev; Muthiah Manoharan; Victor Koteliansky; Ingo Röhl; Elizaveta S. Leshchiner; Robert Langer; Daniel G. Anderson

RNA interference therapeutics afford the potential to silence target gene expression specifically, thereby blocking production of disease-causing proteins. The development of safe and effective systemic small interfering RNA (siRNA) delivery systems is of central importance to the therapeutic application of siRNA. Lipid and lipid-like materials are currently the most well-studied siRNA delivery systems for liver delivery, having been utilized in several animal models, including nonhuman primates. Here, we describe the development of a multicomponent, systemic siRNA delivery system, based on the novel lipid-like material 98N(12)-5(1). We show that in vivo delivery efficacy is affected by many parameters, including the formulation composition, nature of particle PEGylation, degree of drug loading, and biophysical parameters such as particle size. In particular, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids can result in significant effects on in vivo efficacy. The lead formulation developed is liver targeted (>90% injected dose distributes to liver) and can induce fully reversible, long-duration gene silencing without loss of activity following repeat administration.


Molecular Therapy | 2013

Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics

Martin Maier; Muthusamy Jayaraman; Shigeo Matsuda; Ju Liu; Scott Barros; William Querbes; Ying K. Tam; Steven M. Ansell; Varun Kumar; June Qin; Xuemei Zhang; Qianfan Wang; Sue Panesar; Renta Hutabarat; Mary Carioto; Julia Hettinger; Pachamuthu Kandasamy; David Butler; Kallanthottathil G. Rajeev; Bo Pang; Klaus Charisse; Kevin Fitzgerald; Barbara L. Mui; Xinyao Du; Pieter R. Cullis; Thomas D. Madden; Michael J. Hope; Muthiah Manoharan; Akin Akinc

In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.


Molecular therapy. Nucleic acids | 2012

Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

Tatiana Novobrantseva; Anna Borodovsky; Jamie Wong; Boris Klebanov; Mohammad Zafari; Kristina Yucius; William Querbes; Pei Ge; Vera M. Ruda; Rick Duncan; Scott Barros; Genc Basha; Pieter R. Cullis; Akin Akinc; Jessica S. Donahoe; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Roman L. Bogorad; Kevin Love; Katie Whitehead; Chris Levins; Muthiah Manoharan; Filip K. Swirski; Ralph Weissleder; Robert Langer; Daniel G. Anderson; Antonin de Fougerolles; Matthias Nahrendorf; Victor Koteliansky

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

Collaboration


Dive into the Muthusamy Jayaraman's collaboration.

Top Co-Authors

Avatar

Muthiah Manoharan

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

David Butler

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeo Matsuda

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge