Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mutsuki Amano is active.

Publication


Featured researches published by Mutsuki Amano.


Science | 1996

Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase)

Kazushi Kimura; Masaaki Ito; Mutsuki Amano; Kazuyasu Chihara; Yuko Fukata; Masato Nakafuku; Bunpei Yamamori; Jianhua Feng; Takeshi Nakano; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP·RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP·RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.


Journal of Biological Chemistry | 1996

Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase)

Mutsuki Amano; Masaaki Ito; Kazushi Kimura; Yuko Fukata; Kazuyasu Chihara; Takeshi Nakano; Yoshiharu Matsuura; Kozo Kaibuchi

The small GTPase Rho is implicated in physiological functions associated with actin-myosin filaments such as cytokinesis, cell motility, and smooth muscle contraction. We have recently identified and molecularly cloned Rho-associated serine/threonine kinase (Rho-kinase), which is activated by GTP·Rho (Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) EMBO J. 15, 2208-2216). Here we found that Rho-kinase stoichiometrically phosphorylated myosin light chain (MLC). Peptide mapping and phosphoamino acid analyses revealed that the primary phosphorylation site of MLC by Rho-kinase was Ser-19, which is the site phosphorylated by MLC kinase. Rho-kinase phosphorylated recombinant MLC, whereas it failed to phosphorylate recombinant MLC, which contained Ala substituted for both Thr-18 and Ser-19. We also found that the phosphorylation of MLC by Rho-kinase resulted in the facilitation of the actin activation of myosin ATPase. Thus, it is likely that once Rho is activated, then it can interact with Rho-kinase and activate it. The activated Rho-kinase subsequently phosphorylates MLC. This may partly account for the mechanism by which Rho regulates cytokinesis, cell motility, or smooth muscle contraction.


The EMBO Journal | 1996

Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

Takeshi Matsui; Mutsuki Amano; Takaharu Yamamoto; Kazuyasu Chihara; Masato Nakafuku; Masaaki Ito; Takeshi Nakano; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho‐interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non‐hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho‐associated kinase (Rho‐kinase). Rho‐kinase has a catalytic domain in the N‐terminal portion, a coiled coil domain in the middle portion and a zinc finger‐like motif in the C‐terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho‐interacting interface. When COS7 cells were cotransfected with Rho‐kinase and activated RhoA, some Rho‐kinase was recruited to membranes. Thus it is likely that Rho‐kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho‐dependent signaling pathway.


Trends in Pharmacological Sciences | 2001

Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells.

Yuko Fukata; Kozo Kaibuchi; Mutsuki Amano

Hypercontraction or abnormal contraction of vascular smooth muscle is a major cause of diseases such as hypertension and vasospasm of the coronary and cerebral arteries. A better understanding of the mechanism of regulation of smooth muscle contraction should lead to improved treatments for such diseases. Recent studies have revealed important roles for the small GTPase Rho and its effector, Rho-associated kinase (Rho kinase) in Ca2+ independent regulation of smooth muscle contraction. The Rho-Rho-kinase pathway modulates the level of phosphorylation of the myosin light chain of myosin II, mainly through inhibition of myosin phosphatase, and contributes to agonist-induced Ca2+ sensitization in smooth muscle contraction. Rho-Rho-kinase mechanisms also participate in a variety of the cellular functions of non-muscle cells, such as stress-fibre formation, cytokinesis and cell migration. This review summarizes the role of the Rho-Rho-kinase pathway in contractile processes of smooth muscle and in non-muscle cell functions, and the pathophysiological implications of this pathway.


Nature Neuroscience | 2001

CRMP-2 induces axons in cultured hippocampal neurons.

Naoyuki Inagaki; Kazuyasu Chihara; Nariko Arimura; Céline Ménager; Yoji Kawano; Naruhiro Matsuo; Takashi Nishimura; Mutsuki Amano; Kozo Kaibuchi

In cultured hippocampal neurons, one axon and several dendrites differentiate from a common immature process. Here we found that CRMP-2/TOAD-64/Ulip2/DRP-2 (refs. 2–4) level was higher in growing axons of cultured hippocampal neurons, that overexpression of CRMP-2 in the cells led to the formation of supernumerary axons and that expression of truncated CRMP-2 mutants suppressed the formation of primary axon in a dominant-negative manner. Thus, CRMP-2 seems to be critical in axon induction in hippocampal neurons, thereby establishing and maintaining neuronal polarity.


Science | 1996

Identification of a Putative Target for Rho as the Serine-Threonine Kinase Protein Kinase N

Mutsuki Amano; Hideyuki Mukai; Yoshitaka Ono; Kazuyasu Chihara; Takeshi Matsui; Yuko Hamajima; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

Rho, a Ras-like small guanosine triphosphatase, has been implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid (LPA) to form stress fibers and focal contacts. The form of RhoA bound to guanosine triphosphate directly bound to and activated a serine-threonine kinase, protein kinase N (PKN). Activated RhoA formed a complex with PKN and activated it in COS-7 cells. PKN was phosphorylated in Swiss 3T3 cells stimulated with LPA, and this phosphorylation was blocked by treatment of cells with botulinum C3 exoenzyme. Activation of Rho may be linked directly to a serine-threonine kinase pathway.


Cytoskeleton | 2010

Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity

Mutsuki Amano; Masanori Nakayama; Kozo Kaibuchi

Rho‐associated kinase (Rho‐kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho‐kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho‐kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho‐kinase.


Journal of Biological Chemistry | 1998

Thrombin Inactivates Myosin Light Chain Phosphatase via Rho and Its Target Rho Kinase in Human Endothelial Cells

Markus Essler; Mutsuki Amano; Hans-Joachim Kruse; Kozo Kaibuchi; Peter Weber; Martin Aepfelbacher

The role of Rho GTPase and its downstream targets Rho kinase and myosin light chain phosphatase in thrombin-induced endothelial cell contraction was investigated. The specific Rho inactivator C3-transferase from Clostridium botulinum as well as microinjection of the isolated Rho-binding domain of Rho kinase or active myosin light chain phosphatase abolished thrombin-stimulated endothelial cell contraction. Conversely, microinjection of constitutively active V14Rho, constitutively active catalytic domain of Rho kinase, or treatment with the phosphatase inhibitor tautomycin caused contraction. These data are consistent with the notion that thrombin activates Rho/Rho kinase to inactivate myosin light chain phosphatase in endothelial cells. In fact, we demonstrate that thrombin transiently inactivated myosin light chain phosphatase, and this correlated with a peak in myosin light chain phosphorylation. C3-transferase abolished the decrease in myosin light chain phosphatase activity as well as the subsequent increase in myosin light chain phosphorylation and cell contraction. These data suggest that thrombin activates the Rho/Rho kinase pathway to inactivate myosin light chain phosphatase as part of a signaling network that controls myosin light chain phosphorylation/contraction in human endothelial cells.


Cardiovascular Research | 1999

Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm

Hiroaki Shimokawa; Minoru Seto; Naoki Katsumata; Mutsuki Amano; Toshiyuki Kozai; Tohru Yamawaki; Kouichi Kuwata; Tadashi Kandabashi; Kensuke Egashira; Ichiro Ikegaki; Toshio Asano; Kozo Kaibuchi; Akira Takeshita

OBJECTIVE We recently demonstrated in our swine model of coronary artery spasm that enhanced myosin light chain (MLC) phosphorylations (both MLC mono- and diphosphorylations) play a central role in the pathogenesis of the spasm. However, the molecular mechanism for and the phosphorylation sites for the enhanced MLC phosphorylations were unknown. In the present study, we addressed these points using hydroxyfasudil, a novel inhibitor of protein kinases, which we found preferentially inhibits Rho-kinase. METHODS The specificity of the inhibitory effects of hydroxyfasudil on Rho-kinase, MLCK, MRCK beta and PKC were examined by kinase assay in vitro. The left porcine coronary artery was chronically treated with interleukin-1 beta (IL-1 beta, 2.5 micrograms). Two weeks after the operation, coronary artery vasomotion was examined both in vivo and in vitro. MLC phosphorylations were examined by Western blot analysis and the sites for the phosphorylations by anti-phosphorylated MLC antibodies that identified the monophosphorylation site as Ser19 and diphophorylation sites as Ser19/Thr18 of MLC. RESULTS Inhibitory effects of hydroxyfasudil was at least 100 times more potent for Rho-kinase as compared with other protein kinases tested. Intracoronary serotonin (10 micrograms/kg) caused coronary hyperconstriction at the IL-1 beta-treated site in vivo, which was dose-dependently inhibited by hydroxyfasudil (p < 0.01). The coronary segment taken from the spastic site also showed hypercontractions to serotonin in vitro, which were again dose-dependently inhibited by hydroxyfasudil (p < 0.01). Western blot analysis showed that MLC monophosphorylation was significantly greater in the spastic segment than in the control segment, while MLC diphosphorylation was noted only at the spastic segment (p < 0.01). The sites for the mono- and diphosphorylated MLC were identified as the monophosphorylated site Ser19 and diphosphorylated sites Ser19/Thr18 of MLC, respectively. Both types of MLC phosphorylations at the spastic segment were markedly inhibited by hydroxyfasudil (p < 0.01). CONCLUSION These results indicate that hydroxyfasudil-sensitive Rho-kinase-mediated pathway appears to mediate the enhanced MLC phosphorylations (on Ser19 and Ser19/Thr18 residues) and plays a central role in the pathogenesis of coronary artery spasm.


Journal of Biological Chemistry | 2000

Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse.

Nariko Arimura; Naoyuki Inagaki; Kazuyasu Chihara; Céline Ménager; Nao Nakamura; Mutsuki Amano; Akihiro Iwamatsu; Yoshio Goshima; Kozo Kaibuchi

We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.

Collaboration


Dive into the Mutsuki Amano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuyasu Chihara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Iwamatsu

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nao Nakamura

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge