Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mutsutomo Tokizawa is active.

Publication


Featured researches published by Mutsutomo Tokizawa.


Plant Physiology | 2015

SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and Other Transcription Factors Are Involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 Expression

Mutsutomo Tokizawa; Yuriko Kobayashi; Tatsunori Saito; Masatomo Kobayashi; Satoshi Iuchi; Mika Nomoto; Yasuomi Tada; Yoshiharu Yamamoto; Hiroyuki Koyama

A set of unexpected transcription factors affects complex regulatory control of AtALMT1 expression in response to Al stress. In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5′ truncated promoters of different lengths showed that the promoter region between –540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around –297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5′ untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.


Molecular Plant | 2015

High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots

Mitsuhiro Matsuo; Joy Michal Johnson; Ayaka Hieno; Mutsutomo Tokizawa; Mika Nomoto; Yasuomi Tada; Rinesh Godfrey; Junichi Obokata; Irena Sherameti; Yoshiharu Yamamoto; Frank-D. Böhmer

Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.


BMC Plant Biology | 2011

Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

Yoshiharu Yamamoto; Yohei Yoshioka; Mitsuro Hyakumachi; Kyonoshin Maruyama; Kazuko Yamaguchi-Shinozaki; Mutsutomo Tokizawa; Hiroyuki Koyama

BackgroundPhytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones.ResultsWe utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region.ConclusionsOur prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.


Plant Physiology | 2015

The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements

Natsuki Hayami; Yusaku Sakai; Mitsuhiro Kimura; Tatsunori Saito; Mutsutomo Tokizawa; Satoshi Iuchi; Yukio Kurihara; Minami Matsui; Mika Nomoto; Yasuomi Tada; Yoshiharu Yamamoto

Prediction-oriented functional analysis uncovers a transcriptional regulatory unit composed of two unique elements for UV-B, high light, and cold stress responses. The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.


Frontiers in Plant Science | 2017

Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms

Abhijit Arun Daspute; Ayan Sadhukhan; Mutsutomo Tokizawa; Yuriko Kobayashi; Sanjib Kumar Panda; Hiroyuki Koyama

Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSIS THALIANA ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1), which encodes an Al-activated malate transporter, revealed that the Al-inducible expression is regulated by a SENSITIVE TO PROTON RHIXOTOXICITY 1 (STOP1) zinc-finger transcription factor. This system, which involves STOP1 and organic acid transporters, is conserved in diverse plant species. The expression of AtALMT1 is also upregulated by several phytohormones and hydrogen peroxide, suggesting there is crosstalk among the signals involved in the transcriptional regulation of AtALMT1. Additionally, phytohormones and reactive oxygen species (ROS) activate various transcriptional responses, including the expression of genes related to increased Al tolerance or the suppression of root growth under Al stress conditions. For example, Al suppressed root growth due to abnormal accumulation of auxin and cytokinin. It activates transcription of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and other phytohormone responsive genes in distal transition zone, which causes suppression of root elongation. On the other hand, overexpression of Al inducible genes for ROS-detoxifying enzymes such as GLUTATHIONE–S-TRANSFERASE, PEROXIDASE, SUPEROXIDE DISMUTASE enhances Al resistance in several plant species. We herein summarize the complex transcriptional regulation of an Al-inducible genes affected by STOP1, phytohormones, and ROS.


Cell | 2017

Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection

Tomokazu Ushijima; Kousuke Hanada; Eiji Gotoh; Wataru Yamori; Yutaka Kodama; Hiroyuki Tanaka; Miyako Kusano; Atsushi Fukushima; Mutsutomo Tokizawa; Yoshiharu Yamamoto; Yasuomi Tada; Yutaka Suzuki; Tomonao Matsushita

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Planta | 2018

Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea

Abhijit Arun Daspute; Yuriko Kobayashi; Sanjib Kumar Panda; Bashasab Fakrudin; Yasufumi Kobayashi; Mutsutomo Tokizawa; Satoshi Iuchi; Arbind K. Choudhary; Yoshiharu Yamamoto; Hiroyuki Koyama

AbstractMain conclusionAl-responsive citrate-transportingCcMATE1function and its regulation byCcSTOP1were analyzed usingNtSTOP1-KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence ofCcMATE1showed similarity withAtALMT1promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3′ sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3′ flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.


DNA Research | 2017

Prediction of bipartite transcriptional regulatory elements using transcriptome data of Arabidopsis

Yoshiharu Yamamoto; Hiroyuki Ichida; Ayaka Hieno; Daichi Obata; Mutsutomo Tokizawa; Mika Nomoto; Yasuomi Tada; Kazutaka Kusunoki; Hiroyuki Koyama; Natsuki Hayami

Abstract In our previous study, a methodology was established to predict transcriptional regulatory elements in promoter sequences using transcriptome data based on a frequency comparison of octamers. Some transcription factors, including the NAC family, cannot be covered by this method because their binding sequences have non-specific spacers in the middle of the two binding sites. In order to remove this blind spot in promoter prediction, we have extended our analysis by including bipartite octamers that are composed of ‘4 bases—a spacer with a flexible length—4 bases’. 8,044 pre-selected bipartite octamers, which had an overrepresentation of specific spacer lengths in promoter sequences and sequences related to core elements removed, were subjected to frequency comparison analysis. Prediction of ER stress-responsive elements in the BiP/BiPL promoter and an ANAC017 target sequence resulted in precise detection of true positives, judged by functional analyses of a reported article and our own in vitro protein–DNA binding assays. These results demonstrate that incorporation of bipartite octamers with continuous ones improves promoter prediction significantly.


Plant Journal | 2018

Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis

Nobuo Ogita; Yoko Okushima; Mutsutomo Tokizawa; Yoshiharu Yamamoto; Maho Tanaka; Motoaki Seki; Yuko Makita; Minami Matsui; Kaoru Yoshiyama; Tomoaki Sakamoto; Tetsuya Kurata; Kei Hiruma; Yusuke Saijo; Naoki Takahashi; Masaaki Umeda


Plant Journal | 2017

Identification of Arabidopsis genic and non-genic promoters by paired-end sequencing of TSS tags

Mutsutomo Tokizawa; Kazutaka Kusunoki; Hiroyuki Koyama; Atsushi Kurotani; Tetsuya Sakurai; Yutaka Suzuki; Tomoaki Sakamoto; Tetsuya Kurata; Yoshiharu Yamamoto

Collaboration


Dive into the Mutsutomo Tokizawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge