Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mika Nomoto is active.

Publication


Featured researches published by Mika Nomoto.


Proceedings of the National Academy of Sciences of the United States of America | 2014

DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins

Hideki Yoshida; Ko Hirano; Tomomi Sato; Nobutaka Mitsuda; Mika Nomoto; Kenichiro Maeo; Eriko Koketsu; Rie Mitani; Mayuko Kawamura; Sumie Ishiguro; Yasuomi Tada; Masaru Ohme-Takagi; Makoto Matsuoka; Miyako Ueguchi-Tanaka

Significance Gibberellin (GA)-dependent degradation of DELLA protein, a key negative regulator, is essential for GA action. However, it is unclear how DELLA regulates downstream gene expression. Although possessing strong transactivation activity, DELLA lacks a DNA-binding domain. Therefore, a model has been proposed in which DELLA acts as a transcriptional coactivator with another transcription factor or factors containing a DNA-binding domain. Here, we show that some members of the INDETERMINATE DOMAIN (IDD) protein family are such intermediate proteins. The DELLA/IDD complex up-regulates the expression of the GA-positive regulator SCARECROW-LIKE 3 (SCL3). Meanwhile, SCL3 protein also interacts with IDD proteins to suppress its own expression. We propose that a coregulator exchange system between DELLA (as coactivator) and SCL3 (as corepressor) regulates the expression of SCL3. DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of INDETERMINATE DOMAIN (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.


Cell Host & Microbe | 2015

Posttranslational Modifications of the Master Transcriptional Regulator NPR1 Enable Dynamic but Tight Control of Plant Immune Responses

Abdelaty Saleh; John Withers; Rajinikanth Mohan; Jorge Marqués; Yangnan Gu; Shunping Yan; Raul Zavaliev; Mika Nomoto; Yasuomi Tada; Xinnian Dong

NPR1, a master regulator of basal and systemic acquired resistance in plants, confers immunity through a transcriptional cascade, which includes transcription activators (e.g., TGA3) and repressors (e.g., WRKY70), leading to the massive induction of antimicrobial genes. How this single protein orchestrates genome-wide transcriptional reprogramming in response to immune stimulus remains a major question. Paradoxically, while NPR1 is essential for defense gene induction, its turnover appears to be required for this function, suggesting that NPR1 activity and degradation are dynamically regulated. Here we show that sumoylation of NPR1 by SUMO3 activates defense gene expression by switching NPR1s association with the WRKY transcription repressors to TGA transcription activators. Sumoylation also triggers NPR1 degradation, rendering the immune induction transient. SUMO modification of NPR1 is inhibited by phosphorylation at Ser55/Ser59, which keeps NPR1 stable and quiescent. Thus, posttranslational modifications enable dynamic but tight and precise control of plant immune responses.


Plant Physiology | 2015

SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and Other Transcription Factors Are Involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 Expression

Mutsutomo Tokizawa; Yuriko Kobayashi; Tatsunori Saito; Masatomo Kobayashi; Satoshi Iuchi; Mika Nomoto; Yasuomi Tada; Yoshiharu Yamamoto; Hiroyuki Koyama

A set of unexpected transcription factors affects complex regulatory control of AtALMT1 expression in response to Al stress. In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5′ truncated promoters of different lengths showed that the promoter region between –540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around –297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5′ untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.


The EMBO Journal | 2016

The Arabidopsis CERK1‐associated kinase PBL27 connects chitin perception to MAPK activation

Kenta Yamada; Koji Yamaguchi; Tomomi Shirakawa; Hirofumi Nakagami; Akira Mine; Kazuya Ishikawa; Masayuki Fujiwara; Mari Narusaka; Yoshihiro Narusaka; Kazuya Ichimura; Yuka Kobayashi; Hidenori Matsui; Yuko Nomura; Mika Nomoto; Yasuomi Tada; Yoichiro Fukao; Tamo Fukamizo; Kenichi Tsuda; Ken Shirasu; Naoto Shibuya; Tsutomu Kawasaki

Perception of microbe‐associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen‐activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho‐signaling transduction pathway from PRR‐mediated pathogen recognition to MAPK activation in plants. We found that the receptor‐like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1‐LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin‐induced MAPK activation and disease resistance to Alternaria brassicicola. PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo. Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin‐induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Molecular Plant | 2015

High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots

Mitsuhiro Matsuo; Joy Michal Johnson; Ayaka Hieno; Mutsutomo Tokizawa; Mika Nomoto; Yasuomi Tada; Rinesh Godfrey; Junichi Obokata; Irena Sherameti; Yoshiharu Yamamoto; Frank-D. Böhmer

Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.


The EMBO Journal | 2015

Transcriptional repression by MYB3R proteins regulates plant organ growth

Kosuke Kobayashi; Toshiya Suzuki; Eriko Iwata; Norihito Nakamichi; Takamasa Suzuki; Poyu Chen; Misato Ohtani; Takashi Ishida; Hanako Hosoya; Sabine Müller; Tünde Leviczky; Aladár Pettkó-Szandtner; Zsuzsanna Darula; Akitoshi Iwamoto; Mika Nomoto; Yasuomi Tada; Tetsuya Higashiyama; Taku Demura; John H. Doonan; Marie-Theres Hauser; Keiko Sugimoto; Masaaki Umeda; Zoltán Magyar; László Bögre; Masaki Ito

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post‐mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M‐specific genes repressed in post‐mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor‐type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome‐wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M‐specific genes and to E2F target genes. MYB3R3 associates with the repressor‐type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post‐mitotic quiescent state determining organ size.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

Kanako Bessho-Uehara; Diane R. Wang; Tomoyuki Furuta; Anzu Minami; Keisuke Nagai; Rico Gamuyao; Kenji Asano; Rosalyn B. Angeles-Shim; Yoshihiro Shimizu; Madoka Ayano; Norio Komeda; Kazuyuki Doi; Kotaro Miura; Yosuke Toda; Toshinori Kinoshita; Satohiro Okuda; Tetsuya Higashiyama; Mika Nomoto; Yasuomi Tada; Hidefumi Shinohara; Yoshikatsu Matsubayashi; Anthony J. Greenberg; Jianzhong Wu; Hideshi Yasui; Atsushi Yoshimura; Hitoshi Mori; Susan R. McCouch; Motoyuki Ashikari

Significance This study investigates a previously unidentified cysteine-rich peptide (CRP). CRPs have diverse roles in plant growth and development, such as control of stomata density and guidance of pollen-tube elongation. Despite numerous studies on CRPs in Arabidopsis thaliana, there are still many peptides with unknown function. We identify a previously unidentified rice CRP named Regulator of Awn Elongation 2 (RAE2) and show that it is cleaved specifically in the spikelet to promote awn elongation. We demonstrate that RAE2 was a target of selection during domestication, contributing to loss of awns in Asian but not African rice. The discovery of RAE2 simultaneously deepens our understanding of plant developmental pathways and lends insight into the complex processes underlying cereal domestication. Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.


The Plant Cell | 2016

Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha

Keisuke Inoue; Ryuichi Nishihama; Hideo Kataoka; Masashi Hosaka; Ryo Manabe; Mika Nomoto; Yasuomi Tada; Kimitsune Ishizaki; Takayuki Kohchi

A light-dependent transcriptional regulatory mechanism involving phytochrome and the transcription factor PIF was already established in liverwort and perhaps in the common ancestor of land plants. Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana. Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF. These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution.


Plant Physiology | 2015

The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements

Natsuki Hayami; Yusaku Sakai; Mitsuhiro Kimura; Tatsunori Saito; Mutsutomo Tokizawa; Satoshi Iuchi; Yukio Kurihara; Minami Matsui; Mika Nomoto; Yasuomi Tada; Yoshiharu Yamamoto

Prediction-oriented functional analysis uncovers a transcriptional regulatory unit composed of two unique elements for UV-B, high light, and cold stress responses. The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.


Nature Chemical Biology | 2018

Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair

Naoyuki Uchida; Koji Takahashi; Rie Iwasaki; Ryotaro Yamada; Masahiko Yoshimura; Takaho A. Endo; Seisuke Kimura; Hua Zhang; Mika Nomoto; Yasuomi Tada; Toshinori Kinoshita; Kenichiro Itami; Shinya Hagihara; Keiko U. Torii

The phytohormone auxin, indole-3-acetic acid (IAA), regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains as a major challenge. Auxin regulates transcriptional response via its receptors, TIR1/AFB F-box proteins. Here we report an engineered, orthogonal auxin-TIR1 receptor pair, developed through a bump-and-hole strategy, that triggers auxin signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic, convex IAA (cvxIAA) hijacked the downstream auxin signaling in vivo both at the transcriptomic level and in specific developmental contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1) receptor. Harnessing the cvxIAA-ccvTIR1 system, we provide conclusive evidence for the role of TIR1-mediated pathway in auxin-induced seedling acid growth. The cvxIAA-ccvTIR1 system serves as a powerful tool for solving outstanding questions in auxin biology and for precise manipulation of auxin-mediated processes as a controllable switch.

Collaboration


Dive into the Mika Nomoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge