Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myles R. Minter is active.

Publication


Featured researches published by Myles R. Minter.


Journal of Neurochemistry | 2016

The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease

Myles R. Minter; Juliet M. Taylor; Peter J. Crack

Alzheimers disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid‐β (Aβ) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aβ complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro‐inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aβ production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory‐amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved.


Scientific Reports | 2016

Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease

Myles R. Minter; Can Zhang; Vanessa Leone; Daina L. Ringus; Xiaoqiong Zhang; Paul Oyler-Castrillo; Mark W. Musch; Fan Liao; Joseph Ward; David M. Holtzman; Eugene B. Chang; Rudolph E. Tanzi; Sangram S. Sisodia

Severe amyloidosis and plaque-localized neuro-inflammation are key pathological features of Alzheimer’s disease (AD). In addition to astrocyte and microglial reactivity, emerging evidence suggests a role of gut microbiota in regulating innate immunity and influencing brain function. Here, we examine the role of the host microbiome in regulating amyloidosis in the APPSWE/PS1ΔE9 mouse model of AD. We show that prolonged shifts in gut microbial composition and diversity induced by long-term broad-spectrum combinatorial antibiotic treatment regime decreases Aβ plaque deposition. We also show that levels of soluble Aβ are elevated and that levels of circulating cytokine and chemokine signatures are altered in this setting. Finally, we observe attenuated plaque-localised glial reactivity in these mice and significantly altered microglial morphology. These findings suggest the gut microbiota community diversity can regulate host innate immunity mechanisms that impact Aβ amyloidosis.


Biomaterials | 2014

Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain

Deniece Fon; Kun Zhou; Francesca Ercole; Friederike Fehr; Silvia Marchesan; Myles R. Minter; Peter J. Crack; David Finkelstein; John S. Forsythe

Brain tissue engineering has the potential to harness existing elements of neurogenesis within the adult brain to overcome a microenvironment that is otherwise inhibitory to regeneration, especially following severe tissue damage. This study investigates the ability of electrospun poly ε-caprolactone (PCL) to re-direct the migratory pathway of endogenous neuroblasts from the disrupted subventricular zone (SVZ). A small molecule non-peptide ligand (BDNF-mimetic) that mimicked the trophic properties of brain-derived neurotrophic factor (BDNF) was incorporated into electrospun PCL scaffolds to improve neuroblast survival and promote neuroblast migration towards the implant. PCL scaffolds were able to support neuroblast infiltration and migration along the implant tract. In the presence of the BDNF-mimetic, neuroblasts were able to migrate towards the implant via the parenchyma, and their persistence within the implants was prolonged. In addition, the BDNF-mimetic improved implant integration and increased local neuronal plasticity by increasing neurite sprouting at the tissue-implant interface. SMI32+ neurites were observed inside scaffolds at 21 days but not 8 days post implantation, indicating that at least some of the infiltrated neuroblasts had differentiated into neurons.


Scientific Reports | 2017

Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APP SWE /PS1 ΔE9 murine model of Alzheimer’s disease

Myles R. Minter; Reinhard Hinterleitner; Marlies Meisel; Can Zhang; Vanessa Leone; Xiaoqiong Zhang; Paul Oyler-Castrillo; Xulun Zhang; Mark W. Musch; Xunuo Shen; Bana Jabri; Eugene B. Chang; Rudolph E. Tanzi; Sangram S. Sisodia

Recent evidence suggests the commensal microbiome regulates host immunity and influences brain function; findings that have ramifications for neurodegenerative diseases. In the context of Alzheimer’s disease (AD), we previously reported that perturbations in microbial diversity induced by life-long combinatorial antibiotic (ABX) selection pressure in the APPSWE/PS1ΔE9 mouse model of amyloidosis is commensurate with reductions in amyloid-β (Aβ) plaque pathology and plaque-localised gliosis. Considering microbiota-host interactions, specifically during early post-natal development, are critical for immune- and neuro-development we now examine the impact of microbial community perturbations induced by acute ABX exposure exclusively during this period in APPSWE/PS1ΔE9 mice. We show that early post-natal (P) ABX treatment (P14-P21) results in long-term alterations of gut microbial genera (predominantly Lachnospiraceae and S24-7) and reduction in brain Aβ deposition in aged APPSWE/PS1ΔE9 mice. These mice exhibit elevated levels of blood- and brain-resident Foxp3+ T-regulatory cells and display an alteration in the inflammatory milieu of the serum and cerebrospinal fluid. Finally, we confirm that plaque-localised microglia and astrocytes are reduced in ABX-exposed mice. These findings suggest that ABX-induced microbial diversity perturbations during post-natal stages of development coincide with altered host immunity mechanisms and amyloidosis in a murine model of AD.


Journal of Neuroinflammation | 2015

Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro

Myles R. Minter; Bevan S. Main; Kate M. Brody; Moses Zhang; Juliet M. Taylor; Peter J. Crack

BackgroundNeuro-inflammation has long been implicated as a contributor to the progression of Alzheimer’s disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ.MethodsWildtype and Myd88−/− primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay.ResultsReduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88−/− neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88−/− neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity.ConclusionsThis study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity.


Nature Nanotechnology | 2017

Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

Aneesh T. Veetil; Kasturi Chakraborty; Kangni Xiao; Myles R. Minter; Sangram S. Sisodia; Yamuna Krishnan

Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.


Frontiers in Neuroscience | 2017

Microbial Immuno-Communication in Neurodegenerative Diseases

Bevan S. Main; Myles R. Minter

Neuro-inflammation is a critical process by which the brain coordinates chemokine-regulated cellular recruitment, cytokine release, and cell-mediated removal of pathogenic material to protect against infection or brain injury. Dysregulation of this immune response is involved in multiple neurodegenerative disorders, however the precise contribution of neuro-inflammation to the exacerbation and progression of these diseases remains unclear. Evidence now suggests that commensal micro-organisms populating the host and their metabolites, collectively termed the microbiome, regulate innate immunity by influencing peripheral immune cell populations, and modulating microglial phenotype. Recent preclinical studies now demonstrate that perturbations in the host microbiome can induce alterations in pathological phenotypes associated with numerous neurodegenerative diseases. How perturbations in the host microbiome and subsequently altered peripheral immune status are communicated to the brain to influence neuro-inflammatory processes in these neurodegenerative disease settings is far from understood. This review provides insight into the regulation of neuro-inflammatory processes by the host microbiome in the context of neurodegenerative disease and highlights the potential importance of the blood-brain barrier and blood-cerebrospinal fluid-brain barrier, functioning as “immune barriers,” to communicate host immune status to the brain. Understanding the mechanisms by which the commensal microbiome communicates with the brain to influence neuro-inflammatory processes will be critical in the development of microbially-targeted therapeutics in the potential treatment of neurodegenerative disorders.


Journal of Neuroinflammation | 2014

Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2) M17 human neuroblastoma cells

Myles R. Minter; Moses Zhang; Robert Ates; Juliet M. Taylor; Peter J. Crack

BackgroundHypoxic-ischaemic injuries such as stroke and traumatic brain injury exhibit features of a distinct neuro-inflammatory response in the hours and days post-injury. Microglial activation, elevated pro-inflammatory cytokines and macrophage infiltration contribute to core tissue damage and contribute to secondary injury within a region termed the penumbra. Type-1 interferons (IFNs) are a super-family of pleiotropic cytokines that regulate pro-inflammatory gene transcription via the classical Jak/Stat pathway; however their role in hypoxia-ischaemia and central nervous system neuro-inflammation remains unknown. Using an in vitro approach, this study investigated the role of type-1 IFN signalling in an inflammatory setting induced by oxygen glucose deprivation (OGD).MethodsHuman BE(2)M17 neuroblastoma cells or cells expressing a type-1 interferon-α receptor 1 (IFNAR1) shRNA or negative control shRNA knockdown construct were subjected to 4.5 h OGD and a time-course reperfusion period (0 to 24 h). Q-PCR was used to evaluate IFNα, IFNβ, IL-1β, IL-6 and TNF-α cytokine expression levels. Phosphorylation of signal transducers and activators of transcription (STAT)-1, STAT-3 and cleavage of caspase-3 was detected by western blot analysis. Post-OGD cellular viability was measured using a MTT assay.ResultsElevated IFNα and IFNβ expression was detected during reperfusion post-OGD in parental M17 cells. This correlated with enhanced phosphorylation of STAT-1, a downstream type-1 IFN signalling mediator. Significantly, ablation of type-1 IFN signalling, through IFNAR1 knockdown, reduced IFNα, IFNβ, IL-6 and TNF-α expression in response to OGD. In addition, MTT assay confirmed the IFNAR1 knockdown cells were protected against OGD compared to negative control cells with reduced pro-apoptotic cleaved caspase-3 levels.ConclusionsThis study confirms a role for type-1 IFN signalling in the neuro-inflammatory response following OGD in vitro and suggests its modulation through therapeutic blockade of IFNAR1 may be beneficial in reducing hypoxia-induced neuro-inflammation.


Journal of Neural Transmission | 2018

Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease

Juliet M. Taylor; Zachery Moore; Myles R. Minter; Peter J. Crack

Past research in Alzheimer’s disease (AD) has largely been driven by the amyloid hypothesis; the accompanying neuroinflammation seen in AD has been assumed to be consequential and not disease modifying or causative. However, recent data from both clinical and preclinical studies have established that the immune-driven neuroinflammation contributes to AD pathology. Key evidence for the involvement of neuroinflammation in AD includes enhanced microglial and astroglial activation in the brains of AD patients, increased pro-inflammatory cytokine burden in AD brains, and epidemiological evidence that chronic non-steroidal anti-inflammatory drug use prior to disease onset leads to a lower incidence of AD. Identifying critical mediators controlling this neuroinflammation will prove beneficial in developing anti-inflammatory therapies for the treatment of AD. The type-I interferons (IFNs) are pleiotropic cytokines that control pro-inflammatory cytokine secretion and are master regulators of the innate immune response that impact on disorders of the central nervous system. This review provides evidence that the type-I IFNs play a critical role in the exacerbation of neuroinflammation and actively contribute to the progression of AD.


Molecular Neurodegeneration | 2013

Amyloid-β drives a type-1 interferon mediated neuro-inflammatory response in Alzheimer’s disease

Myles R. Minter; Juliet M. Taylor; Moses Zhang; Paul A. Adlard; Peter J. Crack

Background Neuro-inflammation has been implicated in the progression of both acute and chronic neurological diseases. Resident cells of the central nervous system (CNS) detect soluble amyloid-b (Ab) through the toll-like receptors (TLRs), involving Myd88 and interferon regulatory factor (IRF) signalling, and triggers pro-inflammatory cytokine release. Type-1 interferons (IFNs) are master regulators of the pro-inflammatory cytokine response, however, their CNS function remains largely unclear. Type-1 IFNs bind their cognate receptor IFNAR1, activating the JAK-STAT signalling pathway. Significantly, this cascade has been implicated as a mediator soluble Ab1-42-induced toxicity [1]. We have previously demonstrated that removal of IFNAR1, contributes to neuro-protection following Ab142 insult, decreasing type-1 IFN production and apoptosis. This study investigated a role for type-1 IFNs in an AD mouse model and utilised an in vitro approach to analyse TLR signalling as a potential production pathway.

Collaboration


Dive into the Myles R. Minter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moses Zhang

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Kate M. Brody

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Adlard

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge