Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myoung-Gwi Ryou is active.

Publication


Featured researches published by Myoung-Gwi Ryou.


Stroke | 2012

Pyruvate Protects the Brain Against Ischemia–Reperfusion Injury by Activating the Erythropoietin Signaling Pathway

Myoung-Gwi Ryou; Ran Liu; Ming Ren; Jie Sun; Robert T. Mallet; Shao-Hua Yang

Background and Purpose— Pyruvate is known to be cytoprotective through antioxidant and anti-inflammatory mechanisms. We tested the hypothesis that pyruvate protects the brain against ischemia–reperfusion injury by inducing endogenous erythropoietin (EPO) expression. Methods— Pyruvates protective effect was evaluated in C6 glioma cells and HT22 neuronal cells subjected to transient oxygen glucose deprivation. Cell viability (calcein AM assay) and expression of hypoxia-inducible factor-1&agr;, EPO, Akt and Erk (immunoblot), and EPO receptor (reverse transcription–polymerase chain reaction) were analyzed. Transient focal cerebral ischemia in rats was induced by 2 hours middle cerebral artery occlusion followed by 24 hours reperfusion. Pyruvate or saline was infused from 60 minutes occlusion until 30 minutes reperfusion. Lesion volume and DNA fragmentation were assessed by 2,3,5-triphenyltetrazolium staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, respectively. Immunoblots were conducted to determine cerebral EPO contents. Results— Pyruvate increased cell viability, hypoxia-inducible factor-1&agr;, EPO, and Akt phosphorylation. Small interfering RNA suppression of hypoxia-inducible factor-1&agr; and EPO abolished pyruvate-induced cytoprotection. In the rat stroke model, pyruvate reduced lesion volume by 84% and DNA fragmentation by 77% versus controls; increased EPO content paralleled these cerebroprotective actions of pyruvate. Conclusions— Pyruvate activation of the hypoxia-inducible factor-1&agr;–EPO signaling cascade in neurons and glia could protect the brain from ischemia–reperfusion injury.


Experimental Biology and Medicine | 2014

Erythropoietin: Powerful Protection of Ischemic and Post-Ischemic Brain

Anh Q Nguyen; Brandon H Cherry; Gary F Scott; Myoung-Gwi Ryou; Robert T. Mallet

Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10–15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO’s membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain’s resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.


Journal of Biological Chemistry | 2013

Reversing the Warburg Effect as a Treatment for Glioblastoma

Ethan Poteet; Gourav Roy Choudhury; Ali Winters; Wenjun Li; Myoung-Gwi Ryou; Ran Liu; Lin Tang; Anuja Ghorpade; Yi Wen; Fang Yuan; Stephen T. Keir; Hai Yan; Darell D. Bigner; James W. Simpkins; Shaohua Yang

Background: Glioblastoma is the most prevalent brain tumor with the poorest prognosis. Results: Methylene blue enhances oxygen consumption, reduces lactate production, and inhibits glioblastoma cell proliferation. Conclusion: Reversal of the Warburg effect could inhibit glioblastoma cell proliferation. Significance: Modulation of cancer cell bioenergetics and reversal of Warburg effect might provide a novel therapy for glioblastoma. Glioblastoma multiforme (GBM), like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect. Here, we documented that methylene blue (MB) reverses the Warburg effect evidenced by the increasing of oxygen consumption and reduction of lactate production in GBM cell lines. MB decreases GBM cell proliferation and halts the cell cycle in S phase. Through activation of AMP-activated protein kinase, MB inactivates downstream acetyl-CoA carboxylase and decreases cyclin expression. Structure-activity relationship analysis demonstrated that toluidine blue O, an MB derivative with similar bioenergetic actions, exerts similar action in GBM cell proliferation. In contrast, two other MB derivatives, 2-chlorophenothiazine and promethazine, exert no effect on cellular bioenergetics and do not inhibit GBM cell proliferation. MB inhibits cell proliferation in both temozolomide-sensitive and -insensitive GBM cell lines. In a human GBM xenograft model, a single daily dosage of MB does not activate AMP-activated protein kinase signaling, and no tumor regression was observed. In summary, the current study provides the first in vitro proof of concept that reversal of Warburg effect might be a novel therapy for GBM.


Brain Research | 2014

INVOLVEMENT OF P38 MAPK IN REACTIVE ASTROGLIOSIS INDUCED BY ISCHEMIC STROKE

Gourav Roy Choudhury; Myoung-Gwi Ryou; Ethan Poteet; Yi Wen; Runlian He; Fen Sun; Fang Yuan; Kunlin Jin; Shao-Hua Yang

Reactive astrogliosis is an essential feature of astrocytic response to all forms of central nervous system (CNS) injury and disease, which may benefit or harm surrounding neural and non-neural cells. Despite extensive study, its molecular triggers remain largely unknown in term of ischemic stroke. In the current study we investigated the role p38 mitogen-activated protein kinase (MAPK) in astrogliosis both in vitro and in vivo. In a mouse model of middle cerebral artery occlusion (MCAO), p38 MAPK activation was observed in the glia scar area, along with increased glial fibrillary acidic protein (GFAP) expression. In primary astrocyte cultures, hypoxia and scratch injury-induced astrogliosis was attenuated by both p38 inhibition and knockout of p38 MAPK. In addition, both knockout and inhibition of p38 MAPK also reduced astrocyte migration, but did not affect astrocyte proliferation. In a mouse model of permanent MCAO, no significant difference in motor function recovery and lesion volume was observed between conditional GFAP/p38 MAPK knockout mice and littermates. While a significant reduction of astrogliosis was observed in the GFAP/p38 knockout mice compared with the littermates. Our findings suggest that p38 MAPK signaling pathway plays an important role in the ischemic stroke-induced astrogliosis and thus may serve as a novel target to control glial scar formation.


Neuroscience | 2015

Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress.

Myoung-Gwi Ryou; Gourav Roy Choudhury; Wenjun Li; Ali Winters; Fang Yuan; Ran Liu; Shao-Hua Yang

UNLABELLED Brain ischemia and reperfusion (I/R) injury occurs in various pathological conditions, but there is no effective treatment currently available in clinical practice. Methylene blue (MB) is a century-old drug with a newly discovered protective function in the ischemic stroke model. In the current investigation we studied the MB-induced neuroprotective mechanism focusing on stabilization and activation of hypoxia-inducible factor-1α (HIF-1α) in an in vitro oxygen and glucose deprivation (OGD)-reoxygenation model. METHODS HT22 cells were exposed to OGD (0.1% O2, 6h) and reoxygenation (21% O2, 24h). Cell viability was determined with the calcein AM assay. The dynamic change of intracellular O2 concentration was monitored by fluorescence lifetime imaging microscopy (FLTIM). Glucose uptake was quantified using the 2-[N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino]-2-Deoxy-d-Glucose (2-NBDG) assay. ATP concentration and glycolytic enzyme activity were examined by spectrophotometry. Protein content changes were measured by immunoblot: HIF-1α, prolyl hydroxylase 2 (PHD2), erythropoietin (EPO), Akt, mTOR, and PIP5K. The contribution of HIF-1α activation in the MB-induced neuroprotective mechanism was confirmed by blocking HIF-1α activation with 2-methoxyestradiol-2 (2-MeOE2) and by transiently transfecting constitutively active HIF-1α. RESULTS MB increases cell viability by about 50% vs. OGD control. Compared to the corresponding control, MB increases intracellular O2 concentration and glucose uptake as well as the activities of hexokinase and G-6-PDH, and ATP concentration. MB activates the EPO signaling pathway with a corresponding increase in HIF-1α. Phosphorylation of Akt was significantly increased with MB treatment followed by activation of the mTOR pathway. Importantly, we observed, MB increased nuclear translocation of HIF-1α vs. control (about three folds), which was shown by a ratio of nuclear:cytoplasmic HIF-1α protein content. CONCLUSION We conclude that MB protects the hippocampus-derived neuronal cells against OGD-reoxygenation injury by enhancing energy metabolism and increasing HIF-1α protein content accompanied by an activation of the EPO signaling pathway.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass.

Myoung-Gwi Ryou; Devin C Flaherty; Besim Hoxha; Jie Sun; Hunaid Gurji; Steven Rodriguez; Glenn Bell; Albert H Olivencia-Yurvati; Robert T. Mallet

Pyruvate-fortified cardioplegia protects myocardium and hastens postsurgical recovery of patients undergoing cardiopulmonary bypass (CPB). Pyruvate reportedly suppresses degradation of the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), an activator of the gene encoding the cardioprotective cytokine erythropoietin (EPO). This study tested the hypothesis that pyruvate-enriched cardioplegia evoked EPO expression and mobilized EPO signaling mechanisms in myocardium. Hearts of pigs maintained on CPB were arrested for 60 min with 4:1 blood-crystalloid cardioplegia. The crystalloid component contained 188 mM glucose + or - 24 mM pyruvate. After 30-min cardiac reperfusion with cardioplegia-free blood, the pigs were weaned from CPB. Left ventricular myocardium was sampled 4 h after CPB for immunoblot assessment of HIF-1alpha, EPO and its receptor, the signaling kinases Akt and ERK, and endothelial nitric oxide synthase (eNOS), an effector of EPO signaling. Pyruvate-fortified cardioplegia stabilized arterial pressure post-CPB, induced myocardial EPO mRNA expression, and increased HIF-1alpha, EPO, and EPO-R protein contents by 60, 58, and 123%, respectively, vs. control cardioplegia (P < 0.05). Pyruvate cardioplegia also increased ERK phosphorylation by 61 and 118%, respectively, vs. control cardioplegia-treated and non-CPB sham myocardium (P < 0.01), but did not alter Akt phosphorylation. Nitric oxide synthase (NOS) activity and eNOS content fell 32% following control CPB vs. sham, but pyruvate cardioplegia prevented these declines, yielding 49 and 80% greater NOS activity and eNOS content vs. respective control values (P < 0.01). Pyruvate-fortified cardioplegia induced myocardial EPO expression and mobilized the EPO-ERK-eNOS mechanism. By stabilizing HIF-1alpha, pyruvate-fortified cardioplegia may evoke sustained activation of EPOs cardioprotective signaling cascade in myocardium.


The Annals of Thoracic Surgery | 2010

Pyruvate-enriched cardioplegia suppresses cardiopulmonary bypass-induced myocardial inflammation.

Myoung-Gwi Ryou; Devin C Flaherty; Besim Hoxha; Hunaid Gurji; Jie Sun; Lisa M. Hodge; Albert H Olivencia-Yurvati; Robert T. Mallet

BACKGROUND Cardiopulmonary bypass-induced oxidative stress initiates inflammation that can damage the myocardium. This study tested whether cardioplegia enriched with the intermediary metabolite and antioxidant pyruvate dampens postbypass myocardial inflammation. METHODS Pigs were maintained on cardiopulmonary bypass while their hearts were arrested for 60 minutes with 4:1 blood:crystalloid cardioplegia, in which the crystalloid contained 188 mM glucose ± 24 mM pyruvate. Pigs were weaned from bypass after 30 minutes of whole blood reperfusion and recovered for 4 hours. Glutathione (GSH) and glutathione disulfide (GSSG) were measured in coronary sinus plasma to indirectly monitor myocardial GSH redox state (GSH/GSSG). Left ventricular myocardium was sampled 4 hours after cardiopulmonary bypass for analyses of C-reactive protein, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinase-2 (TIMP-2), and to assess neutrophil infiltration by histology and myeloperoxidase assay. RESULTS Coronary sinus GSH/GSSG fell 70% after cardiopulmonary bypass with control cardioplegia, but pyruvate cardioplegia produced a robust increase in coronary sinus GSH/GSSG that persisted for 4 hours after bypass. Myocardial C-reactive protein content increased 5.6-fold after control bypass, and neutrophil infiltration and myeloperoxidase activity also increased, but pyruvate-fortified cardioplegia prevented these inflammatory effects. Control cardioplegia lowered myocardial TIMP-2 content by 59% and increased matrix metalloproteinase-9 activity by 35% versus nonbypass sham values, but pyruvate cardioplegia increased TIMP-2 content ninefold versus control cardioplegia and prevented the increase in matrix metalloproteinase-9. Matrix metalloproteinase-2 was not affected by bypass ± pyruvate. CONCLUSIONS Pyruvate-enriched cardioplegia dampens cardiopulmonary bypass-induced myocardial inflammation. Increased GSH/GSSG and TIMP-2 may mediate pyruvates effects.


Experimental Biology and Medicine | 2008

Hypoxic Conditioning Suppresses Nitric Oxide Production upon Myocardial Reperfusion

Myoung-Gwi Ryou; Jie Sun; Kevin N. Oguayo; Eugenia B. Manukhina; H. Fred Downey; Robert T. Mallet

Physiologically modulated concentrations of nitric oxide (NO) are generally beneficial, but excessive NO can injure myocardium by producing cytotoxic peroxynitrite. Recently we reported that intermittent, normobaric hypoxia conditioning (IHC) produced robust cardioprotection against infarction and lethal arrhythmias in a canine model of coronary occlusion-reperfusion. This study tested the hypothesis that IHC suppresses myocardial nitric oxide synthase (NOS) activity and thereby dampens explosive, excessive NO formation upon reperfusion of occluded coronary arteries. Mongrel dogs were conditioned by a 20 d program of IHC (FIO2 9.5–10%; 5–10 min hypoxia/cycle, 5–8 cycles/d with intervening 4 min normoxia). One day later, ventricular myocardium was sampled for NOS activity assays, and immunoblot detection of the endothelial NOS isoform (eNOS). In separate experiments, myocardial nitrite (NO2 −) release, an index of NO formation, was measured at baseline and during reperfusion following 1 h occlusion of the left anterior descending coronary artery (LAD). Values in IHC dogs were compared with respective values in non-conditioned, control dogs. IHC lowered left and right ventricular NOS activities by 60%, from 100–115 to 40–45 mU/g protein (P < 0.01), and decreased eNOS content by 30% (P < 0.05). IHC dampened cumulative NO2 − release during the first 5 min reperfusion from 32 ± 7 to 14 ± 2 μmol/g (P < 0.05), but did not alter hyperemic LAD flow (15 ± 2 vs. 13 ± 2 ml/g). Thus, IHC suppressed myocardial NOS activity, eNOS content, and excessive NO formation upon reperfusion without compromising reactive hyperemia. Attenuation of the NOS/NO system may contribute to IHC-induced protection of myocardium from ischemia-reperfusion injury.


PLOS ONE | 2015

Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

Gourav Roy Choudhury; Ali Winters; Ryan Rich; Myoung-Gwi Ryou; Zygmunt Gryczynski; Fang Yuan; Shao-Hua Yang; Ran Liu

Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.


PLOS ONE | 2014

HIV-1 Nef Is Transferred from Expressing T Cells to Hepatocytic Cells through Conduits and Enhances HCV Replication

In-Woo Park; Yan Fan; Xiaoyu Luo Ph.D.; Myoung-Gwi Ryou; Jinfeng Liu; Linden A. Green; Johnny J. He

HIV-1 infection enhances HCV replication and as a consequence accelerates HCV-mediated hepatocellular carcinoma (HCC). However, the precise molecular mechanism by which this takes place is currently unknown. Our data showed that infectious HIV-1 failed to replicate in human hepatocytic cell lines. No discernible virus replication was observed, even when the cell lines transfected with HIV-1 proviral DNA were co-cultured with Jurkat T cells, indicating that the problem of liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was transferred from nef-expressing T cells to hepatocytic cells through conduits, wherein up to 16% (average 10%) of the cells harbored the transferred Nef, when the hepatocytic cells were co-cultured with nef-expressing Jurkat cells for 24 h. Further, Nef altered the size and numbers of lipid droplets (LD), and consistently up-regulated HCV replication by 1.5∼2.5 fold in the target subgenomic replicon cells, which is remarkable in relation to the initially indolent viral replication. Nef also dramatically augmented reactive oxygen species (ROS) production and enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate HCC. Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating progression of liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay.

Collaboration


Dive into the Myoung-Gwi Ryou's collaboration.

Top Co-Authors

Avatar

Robert T. Mallet

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Albert H Olivencia-Yurvati

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Shao-Hua Yang

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Arthur G. Williams

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Gourav Roy Choudhury

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ali Winters

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Anh Q Nguyen

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jie Sun

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Brandon H Cherry

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Gary F Scott

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge