Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myra E. Conway is active.

Publication


Featured researches published by Myra E. Conway.


Journal of Biological Chemistry | 2007

A Novel Branched-chain Amino Acid Metabolon PROTEIN-PROTEIN INTERACTIONS IN A SUPRAMOLECULAR COMPLEX

Mohammad Mainul Islam; Reidar Wallin; R. Max Wynn; Myra E. Conway; Hisao Fujii; James A. Mobley; David T. Chuang; Susan M. Hutson

The catabolic pathways of branched-chain amino acids have two common steps. The first step is deamination catalyzed by the vitamin B6-dependent branched-chain aminotransferase isozymes (BCATs) to produce branched-chain α-keto acids (BCKAs). The second step is oxidative decarboxylation of the BCKAs mediated by the branched-chain α-keto acid dehydrogenase enzyme complex (BCKD complex). The BCKD complex is organized around a cubic core consisting of 24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the branched-chain α-keto acid decarboxylase/dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), BCKD kinase, and BCKD phosphatase. In this study, we provide evidence that human mitochondrial BCAT (hBCATm) associates with the E1 decarboxylase component of the rat or human BCKD complex with a KD of 2.8 μm. NADH dissociates the complex. The E2 and E3 components do not interact with hBCATm. In the presence of hBCATm, kcat values for E1-catalyzed decarboxylation of the BCKAs are enhanced 12-fold. Mutations of hBCATm proteins in the catalytically important CXXC center or E1 proteins in the phosphorylation loop residues prevent complex formation, indicating that these regions are important for the interaction between hBCATm and E1. Our results provide evidence for substrate channeling between hBCATm and BCKD complex and formation of a metabolic unit (termed branched-chain amino acid metabolon) that can be influenced by the redox state in mitochondria.


Journal of Biological Chemistry | 2005

Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin.

Masaru Goto; Ikuko Miyahara; Ken Hirotsu; Myra E. Conway; Neela H. Yennawar; Mohammad Mainul Islam; Susan M. Hutson

This study presents the first three-dimensional structures of human cytosolic branched-chain aminotransferase (hBCATc) isozyme complexed with the neuroactive drug gabapentin, the hBCATc Michaelis complex with the substrate analog, 4-methylvalerate, and the mitochondrial isozyme (hBCATm) complexed with gabapentin. The branched-chain aminotransferases (BCAT) reversibly catalyze transamination of the essential branched-chain amino acids (leucine, isoleucine, valine) to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The cytosolic isozyme is the predominant BCAT found in the nervous system, and only hBCATc is inhibited by gabapentin. Pre-steady state kinetics show that 1.3 mm gabapentin can completely inhibit the binding of leucine to reduced hBCATc, whereas 65.4 mm gabapentin is required to inhibit leucine binding to hBCATm. Structural analysis shows that the bulky gabapentin is enclosed in the active-site cavity by the shift of a flexible loop that enlarges the active-site cavity. The specificity of gabapentin for the cytosolic isozyme is ascribed at least in part to the location of the interdomain loop and the relative orientation between the small and large domain which is different from these relationships in the mitochondrial isozyme. Both isozymes contain a CXXC center and form a disulfide bond under oxidizing conditions. The structure of reduced hBCATc was obtained by soaking the oxidized hBCATc crystals with dithiothreitol. The close similarity in active-site structures between cytosolic enzyme complexes in the oxidized and reduced states is consistent with the small effect of oxidation on pre-steady state kinetics of the hBCATc first half-reaction. However, these kinetic data do not explain the inactivation of hBCATm by oxidation of the CXXC center. The structural data suggest that there is a larger effect of oxidation on the interdomain loop and residues surrounding the CXXC center in hBCATm than in hBCATc.


Journal of Neurochemistry | 2012

Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation

Jonathon Hull; Maya El Hindy; Patrick Gavin Kehoe; Katy Chalmers; Seth Love; Myra E. Conway

The branched chain aminotransferase enzymes (BCAT) serve as nitrogen donors for the production of 30% of de novo glutamate synthesis in rat brain. Despite the importance of this major metabolite and excitatory neurotransmitter, the distribution of BCAT proteins in the human brain (hBCAT) remains unreported. We have studied this and report, for the first time, that the mitochondrial isoform, hBCATm is largely confined to vascular endothelial cells, whereas the cytosolic hBCATc is restricted to neurons. The majority of hBCATc‐labelled neurons were either GABA‐ergic or glutamatergic showing both cell body and axonal staining indicating a role for hBCATc in both glutamate production and glutamate release during excitation. Strong staining in hormone secreting cells suggests a further role for the transaminases in hormone regulation potentially similar to that proposed for insulin secretion. Expression of hBCATm in the endothelial cells of the vasculature demonstrates for the first time that glutamate could be metabolized by aminotranferases in these cells. This has important implications given that the dysregulation of glutamate metabolism, leading to glutamate excitotoxicity, is an important contributor to the pathogenesis of several neurodegenerative conditions, where the role of hBCATm in metabolizing excess glutamate may factor more prominently.


Journal of Biological Chemistry | 2006

Human Mitochondrial Branched Chain Aminotransferase Isozyme: STRUCTURAL ROLE OF THE CXXC CENTER IN CATALYSIS.

Neela H. Yennawar; Mohammad Mainul Islam; Myra E. Conway; Reidar Wallin; Susan M. Hutson

Mammalian branched chain aminotransferases (BCATs) have a unique CXXC center. Kinetic and structural studies of three CXXC center mutants (C315A, C318A, and C315A/C318A) of human mitochondrial (hBCATm) isozyme and the oxidized hBCATm enzyme (hBCATm-Ox) have been used to elucidate the role of this center in hBCATm catalysis. X-ray crystallography revealed that the CXXC motif, through its network of hydrogen bonds, plays a crucial role in orienting the substrate optimally for catalysis. In all structures, there were changes in the structure of the β-turn preceding the CXXC motif when compared with wild type protein. The N-terminal loop between residues 15 and 32 is flexible in the oxidized and mutant enzymes, the disorder greater in the oxidized protein. Disordering of the N-terminal loop disrupts the integrity of the side chain binding pocket, particularly for the branched chain side chain, less so for the dicarboxylate substrate side chain. The kinetic studies of the mutant and oxidized enzymes support the structural analysis. The kinetic results showed that the predominant effect of oxidation was on the second half-reaction rather than the first half-reaction. The oxidized enzyme was completely inactive, whereas the mutants showed limited activity. Model building of the second half-reaction substrate α-ketoisocaproate in the pyridoxamine 5′-phosphate-hBCATm structure suggests that disruption of the CXXC center results in altered substrate orientation and deprotonation of the amino group of pyridoxamine 5′-phosphate, which inhibits catalysis.


Biochemistry | 2009

S-Nitrosoglutathione Inactivation of the Mitochondrial and Cytosolic BCAT Proteins: S-Nitrosation and S-Thiolation †

Steven Coles; Peter Easton; Hayley Sharrod; Susan M. Hutson; John F. Hancock; Vinood B. Patel; Myra E. Conway

Specific proteins with reactive thiol(ate) groups are susceptible to nitric oxide (NO) modification, which can result in S-nitrosation, S-thiolation, or disulfide bond formation. In the present study the effect of NO modification on the functionality of human mitochondrial and cytosolic branched-chain aminotransferases (hBCATm and hBCATc, respectively) was investigated. Here, the NO reactive agents, S-nitrosoglutathione (GSNO), S-nitroso-N-acetyl-dl-penacillamine, and sodium nitroprusside, inactivated both isoforms in a dose-dependent manner. Furthermore, low concentrations of GSNO caused a time-dependent loss in BCAT activity (50 +/- 3% and 77 +/- 2% for hBCATc and hBCATm, respectively) correlating with the loss of four and one to two thiol groups, respectively, confirming the thiols as targets for NO modification. Analysis of GSNO-modified hBCATc by quadrupole time-of-flight mass spectrometry identified a major peak containing three NO adducts and a minor peak equivalent to two NO adducts and one glutathione (GSH) molecule, the latter confirmed by Western blot analysis. Moreover, prolonged exposure or increased levels of GSNO caused increased S-glutathionylation and partial dimerization of hBCATc, suggesting a possible shift from regulation by NO to one of adaptation during nitrosated stress. Although GSNO inactivated hBCATm, neither S-nitrosation, S-glutathionylation, nor dimerization could be detected, suggesting differential mechanisms of regulation through NO between isoforms in the mitochondria and cytosol. Reversal of GSNO-modified hBCAT using GSH alone was only partial, and complete reactivation was only possible using the glutaredoxin/GSH system (97 +/- 4% and 91 +/- 3% for hBCATc and hBCATm, respectively), implicating the importance of a full physiological redox system for activation/inactivation. To conclude, these results clearly demonstrate distinct functional/mechanistic responses to GSNO modification between BCAT isoforms and offer intriguing comparisons between the BCAT proteins and the respective cytosolic and mitochondrial hTrx and hGrx proteins.


Analytical Biochemistry | 2002

A continuous 96-well plate spectrophotometric assay for branched-chain amino acid aminotransferases

Arthur J. L. Cooper; Myra E. Conway; Susan M. Hutson

A new, continuous 96-well plate spectrophotometric assay for the branched-chain amino acid aminotransferases is described. Transamination of L-leucine with alpha-ketoglutarate results in formation of alpha-ketoisocaproate, which is reductively aminated back to L-leucine by leucine dehydrogenase in the presence of ammonia and NADH. The disappearance of absorbance at 340 nm due to NADH oxidation is measured continuously. The specific activities obtained by this procedure for the highly purified human mitochondrial and cytosolic isoforms of BCAT compare favorably with those obtained by a commonly used radiochemical procedure, which measures transamination between alpha-ketoiso[1-14C]valerate and L-isoleucine. Due to the presence of glutamate dehydrogenase substrates (alpha-ketoglutarate, ammonia, and NADH) and L-leucine (an activator of glutamate dehydrogenase) in the standard assay mixture, interference with the measurement of BCAT activity in tissue homogenates by glutamate dehydrogenase is observed. However, by limiting the amount of ammonia and including the inhibitor GTP in the assay mixture, the interference from the glutamate dehydrogenase reaction is minimized. By comparing the rate of loss of absorbance at 340 nm in the modified spectrophotometric assay mixture containing leucine dehydrogenase to that obtained in the modified spectrophotometric assay mixture lacking leucine dehydrogenase, it is possible to measure BCAT activity in microliter amounts of rat tissue homogenates. The specific activities of BCAT in homogenates of selected rat tissues obtained by this method are comparable to those obtained previously by the radiochemical procedure.


Biochemistry | 2008

Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.

Myra E. Conway; Steven Coles; Mohammad Mainul Islam; Susan M. Hutson

Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.


Methods of Molecular Biology | 2008

Redox Regulation and Trapping Sulphenic Acid in the Peroxide Sensitive Human Mitochondrial Branched Chain Aminotransferase

Susan M. Hutson; Leslie B. Poole; Steven Coles; Myra E. Conway

The human branched chain aminotransferase enzymes are key regulators of glutamate metabolism in the brain and are among a growing number of redox-sensitive proteins. Studies that use thiol-specific reagents and electrospray ionization mass spectrometry demonstrate that the mitochondrial BCAT enzyme has a redox-active CXXC center, which on oxidation forms a disulfide bond (RSSR), via a cysteine sulfenic acid intermediate. Mechanistic details of this redox regulation were revealed by the use of mass spectrometry and dimedone modification. We discovered that the thiol group at position C315 of the CXXC motif acts a redox sensor, whereas the thiol group at position C318 permits reversible regulation by forming an intrasubunit disulphide bond. Because of their roles in redox regulation and catalysis, there is a growing interest in cysteine sulphenic acids. Therefore, development of chemical tags/methods to trap these transient intermediates is of immense importance.


Antioxidants & Redox Signaling | 2014

The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase--implications in Alzheimer's disease.

Maya El Hindy; Mohammed Hezwani; David Corry; Jonathon Hull; Farah El Amraoui; Matthew Harris; Christopher Lee; Thomas Forshaw; Andrew Wilson; Abbe Mansbridge; Martin Hassler; Vinood B. Patel; Patrick Gavin Kehoe; Seth Love; Myra E. Conway

AIMS The human branched-chain aminotransferase proteins (hBCATm and hBCATc) are regulated through oxidation and S-nitrosation. However, it remains unknown whether they share common redox characteristics to enzymes such as protein disulfide isomerase (PDI) in terms of regulating cellular repair and protein misfolding. RESULTS Here, similar to PDI, the hBCAT proteins showed dithiol-disulfide isomerase activity that was mediated through an S-glutathionylated mechanism. Site-directed mutagenesis of the active thiols of the CXXC motif demonstrates that they are fundamental to optimal protein folding. Far Western analysis indicated that both hBCAT proteins can associate with PDI. Co-immunoprecipitation studies demonstrated that hBCATm directly binds to PDI in IMR-32 cells and the human brain. Electron and confocal microscopy validated the expression of PDI in mitochondria (using Mia40 as a mitochondrial control), where both PDI and Mia40 were found to be co-localized with hBCATm. Under conditions of oxidative stress, this interaction is decreased, suggesting that the proposed chaperone role for hBCATm may be perturbed. Moreover, immunohistochemistry studies show that PDI and hBCAT are expressed in the same neuronal and endothelial cells of the vasculature of the human brain, supporting a physiological role for this binding. INNOVATION This study identifies a novel redox role for hBCAT and confirms that hBCATm differentially binds to PDI under cellular stress. CONCLUSION These studies indicate that hBCAT may play a role in the stress response of the cell as a novel redox chaperone, which, if compromised, may result in protein misfolding, creating aggregates as a key feature in neurodegenerative conditions such as Alzheimers disease.


Journal of Alzheimer's Disease | 2015

Regional Increase in the Expression of the BCAT Proteins in Alzheimer's Disease Brain: Implications in Glutamate Toxicity

Jonathon Hull; Vinood B. Patel; Maya El Hindy; Christopher Lee; Esther Odeleye; Mohammed Hezwani; Seth Love; Patrick Gavin Kehoe; Katy Chalmers; Myra E. Conway

BACKGROUND The human branched chain aminotransferases (hBCATm, mitochondrial and hBCATc, cytosolic) are major contributors to brain glutamate production. This excitatory neurotransmitter is thought to contribute to neurotoxicity in neurodegenerative conditions such as Alzheimers disease (AD) but the expression of hBCAT in this disease has not previously been investigated. OBJECTIVE The objective of investigating hBCAT expression is to gain insight into potential metabolic pathways that may be dysregulated in AD brain, which would contribute to glutamate toxicity. METHODS Western blot analysis and immunohistochemistry were used to determine the expression and localization of hBCAT in postmortem frontal and temporal cortex from AD and matched control brains. RESULTS Western blot analysis demonstrated a significant regional increase in hBCATc expression in the hippocampus (↑ 36%; p-values of 0.012), with an increase of ↑ 160% reported for hBCATm in the frontal and temporal cortex (p-values = 4.22 × 10⁻⁴ and 2.79 × 10⁻⁵, respectively) in AD relative to matched controls, with evidence of post-translational modifications to hBCATm, more prominent in AD samples. Using immunohistochemistry, a significant increase in immunopositive labelling of hBCATc was observed in the CA1 and CA4 region of the hippocampus (p-values = 0.011 and 0.026, respectively) correlating with western blot analysis. Moreover, the level of hBCATm in the frontal and temporal cortex correlated significantly with disease severity, as indicated by Braak staging (p-values = 5.63 × 10⁻⁶ and 9.29 × 10⁻⁵, respectively). CONCLUSION The expression of the hBCAT proteins is significantly elevated in AD brain. This may modulate glutamate production and toxicity, and thereby play a role in the pathogenesis of the disease.

Collaboration


Dive into the Myra E. Conway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathon Hull

University of the West of England

View shared research outputs
Top Co-Authors

Avatar

Neela H. Yennawar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Maya El Hindy

University of the West of England

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth Love

University of Bristol

View shared research outputs
Top Co-Authors

Avatar

Vinood B. Patel

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge