Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myria Petrou is active.

Publication


Featured researches published by Myria Petrou.


Arthritis & Rheumatism | 2008

Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia

Richard E. Harris; Pia C. Sundgren; Yuxi Pang; Michael Hsu; Myria Petrou; Seong Ho Kim; Samuel A. McLean; Richard H. Gracely; Daniel J. Clauw

OBJECTIVE Fibromyalgia (FM) is a chronic widespread pain condition that is thought to arise from augmentation of central neural activity. Glutamate (Glu) is an excitatory neurotransmitter that functions in pain-processing pathways. This study was carried out to investigate the relationship between changing levels of Glu within the insula and changes in multiple pain domains in patients with FM. METHODS Ten patients with FM underwent 2 sessions of proton magnetic resonance spectroscopy (H-MRS) and 2 sessions of functional magnetic resonance imaging (FMRI), each conducted before and after a nonpharmacologic intervention to reduce pain. During H-MRS, the anterior and posterior insular regions were examined separately using single-voxel spectroscopy. The levels of Glu and other metabolites were estimated relative to levels of creatine (Cr) (e.g., the Glu/Cr ratio). During FMRI, painful pressures were applied to the thumbnail to elicit neuronal activation. Experimental pressure-evoked pain thresholds and clinical pain ratings (on the Short Form of the McGill Pain Questionnaire [SF-MPQ]) were also assessed prior to each imaging session RESULTS Both experimental pain (P = 0.047 versus pretreatment) and SF-MPQ-rated clinical pain (P = 0.043 versus pretreatment) were reduced following treatment. Changes from pre- to posttreatment in Glu/Cr were negatively correlated with changes in experimental pain thresholds (r = -0.95, P < 0.001) and positively correlated with changes in clinical pain (r = 0.85, P = 0.002). Changes in the FMRI-determined blood oxygenation level-dependent effect (a measure of neural activation) were positively correlated with changes in Glu/Cr within the contralateral insula (r = 0.81, P = 0.002). CONCLUSION Changes in Glu levels within the insula are associated with changes in multiple pain domains in patients with FM. Thus, H-MRS data may serve as a useful biomarker and surrogate end point for clinical trials of FM.


Anesthesiology | 2013

Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients.

Richard E. Harris; Vitaly Napadow; John P. Huggins; Lynne Pauer; Jieun Kim; Johnson P. Hampson; Pia C. Sundgren; Bradley R. Foerster; Myria Petrou; Tobias Schmidt-Wilcke; Daniel J. Clauw

Background:Chronic pain remains a significant challenge for modern health care as its pathologic mechanisms are largely unknown and preclinical animal models suffer from limitations in assessing this complex subjective experience. However, human brain neuroimaging techniques enable the assessment of functional and neurochemical alterations in patients experiencing chronic pain and how these factors may dynamically change with pharmacologic treatment. Methods:To identify the clinical action of pregabalin, a proven analgesic, the authors performed three complementary brain neuroimaging procedures: (proton magnetic resonance spectroscopy, functional magnetic resonance imaging, and functional connectivity magnetic resonance imaging) in 17 chronic pain patients diagnosed with fibromyalgia. Results:The authors found that pregabalin but not placebo reduces combined glutamate + glutamine levels within the posterior insula (pregabalin P = 0.016; placebo P = 0.71). Interestingly, reductions in clinical pain were associated with reductions in brain connectivity of this structure to brain regions within the default mode network during pregabalin (r = 0.82; P = 0.001) but not placebo (r = −0.13; P = 0.63). Response of default mode network regions to experimental pain was also reduced with pregabalin (P = 0.018) but not placebo (P = 0.182). Perhaps most importantly, baseline values for all three neuroimaging markers predicted subsequent analgesic response to pregabalin but not placebo. Conclusions:The results of this study suggest that pregabalin works in part by reducing insular glutamatergic activity, leading to a reduction of the increased functional connectivity seen between brain regions in chronic pain states. The study also supports a role for human brain imaging in the development, assessment, and personalized use of central-acting analgesics.


Arthritis & Rheumatism | 2012

Reduced insular γ-aminobutyric acid in fibromyalgia

Bradley R. Foerster; Myria Petrou; Richard A.E. Edden; Pia C. Sundgren; Tobias Schmidt-Wilcke; Suzan E. Lowe; Steven E. Harte; Daniel J. Clauw; Richard E. Harris

OBJECTIVE Recent scientific findings have reinvigorated interest in examining the role of γ-aminobutyric acid (GABA), the major inhibitory central nervous system neurotransmitter, in chronic pain conditions. Decreased inhibitory neurotransmission is a proposed mechanism in the pathophysiology of chronic pain syndromes such as fibromyalgia (FM). The purpose of this study was to test the hypothesis that decreased levels of insular and anterior cingulate GABA would be present in FM patients, and that the concentration of this neurotransmitter would be correlated with pressure-pain thresholds. METHODS Sixteen FM patients and 17 age- and sex-matched healthy controls underwent pressure-pain testing and a 3T proton magnetic resonance spectroscopy session in which the right anterior insula, right posterior insula, anterior cingulate, and occipital cortex were examined in subjects at rest. RESULTS GABA levels in the right anterior insula were significantly lower in FM patients compared with healthy controls (mean ± SD 1.17 ± 0.24 arbitrary institutional units versus 1.42 ± 0.32 arbitrary institutional units; P = 0.016). There was a trend toward increased GABA levels in the anterior cingulate of FM patients compared with healthy controls (P = 0.06). No significant differences between groups were detected in the posterior insula or occipital cortex (P > 0.05 for all comparisons). Within the right posterior insula, higher levels of GABA were positively correlated with pressure-pain thresholds in the FM patients (Spearmans rho = 0.63; P = 0.02). CONCLUSION Diminished inhibitory neurotransmission resulting from lower concentrations of GABA within the right anterior insula may play a role in the pathophysiology of FM and other central pain syndromes.


American Journal of Roentgenology | 2007

Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology.

Myria Petrou; Leslie E. Quint; Bin Nan; Laurence H. Baker

OBJECTIVE The purpose of our study was to assess differences in volumetric measurements of pulmonary nodules obtained using different CT slice thicknesses; correlate these differences with nodule size, shape, and margination; and compare measurements generated by two different software packages. MATERIALS AND METHODS Seventy-five individual nodules identified on 29 lowdose, unenhanced, MDCT chest examinations were selected for volumetric analysis. Each image data set was reconstructed in three ways (slice thickness/reconstruction interval): 1.25 mm/0.625 mm, 2.5 mm/2 mm, and 5 mm/2.5 mm. Volumetric measurements were made on all 75 nodules at 1.25- and 2.5-mm slice thicknesses and on 57 of 75 nodules at the 5-mm thickness using Volume Analysis software. For 69 of 75 nodules, measurements were obtained on 1.25- and 2.5-mm-thick sections using a different commercially available software system, LN500 R2 software. Volume variability between different slice thicknesses was correlated with nodule diameter, shape, and margination using multiple linear regression. Percent differences between measurements obtained with the two software systems were calculated. Significance of relative volume differences between slice thicknesses and software packages was assessed using a one-sample Students t-test. RESULTS Although statistically significant differences in volumes between different section thicknesses were seen only for the tiny nodule size group, many individual nodules showed substantial volume variation. Significant differences were seen in nodule volume variability for smaller nodules (3-10 mm) compared with larger nodules (> or = 11 mm) (p < 0.0001), as well as spiculated compared with smooth nodules, within a single size group (p < 0.05). No effect of nodule shape (round vs elongated) was noted. Statistically significant differences in measurements obtained with the two software systems were seen only with 2.5-mm-thick sections (p = 0.001). CONCLUSION CT slice thickness variation resulted in significant differences in volume measurements for tiny nodules. A spiculated margin was shown to have a significant effect on nodule volume variability within a single size group. Use of different software packages resulted in significant volume measurement differences at the 2.5-mm CT slice thickness.


Movement Disorders | 2015

Amyloid deposition in Parkinson's disease and cognitive impairment: A systematic review

Myria Petrou; Ben A. Dwamena; Bradley R. Foerster; Mark MacEachern; Nicolaas I. Bohnen; Martijn Muller; Roger L. Albin; Kirk A. Frey

Varying degrees of cortical amyloid deposition are reported in the setting of Parkinsonism with cognitive impairment. We performed a systematic review to estimate the prevalence of Alzheimer disease (AD) range cortical amyloid deposition among patients with Parkinsons disease with dementia (PDD), Parkinsons disease with mild cognitive impairment (PD‐MCI) and dementia with Lewy bodies (DLB). We included amyloid positron emission tomography (PET) imaging studies using Pittsburgh Compound B (PiB).


Neurology | 2012

Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis

Bradley R. Foerster; Brian C. Callaghan; Myria Petrou; Richard A.E. Edden; T.L. Chenevert; Eva L. Feldman

Objectives: To determine if there are in vivo differences in γ-aminobutyric acid (GABA) in the motor cortex and subcortical white matter of patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls using proton magnetic resonance spectroscopy (1H-MRS). Methods: In this cross-sectional study, 10 patients with ALS and 9 age- and sex-matched healthy controls (HCs) underwent 3T edited 1H-MRS to quantify GABA centered on the motor cortex and the subcortical white matter. Results: Compared with healthy controls, patients with ALS had significantly lower levels of GABA in the left motor cortex (1.42 ± 0.27 arbitrary institutional units vs 1.70 ± 0.24 arbitrary institutional units, p = 0.038). There was no significant difference in GABA levels between groups in the subcortical white matter (p > 0.05). Conclusion: Decreased levels of GABA are present in the motor cortex of patients with ALS compared to HCs. Findings are consistent with prior reports of alterations in GABA receptors in the motor cortex as well as increased cortical excitability in the context of ALS. Larger, longitudinal studies are needed to confirm these findings and to further our understanding of the role of GABA in the pathogenesis of ALS.


Neurology | 2012

Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia

Myria Petrou; Nicolaas I. Bohnen; Martijn Muller; Robert A. Koeppe; Roger L. Albin; Kirk A. Frey

Objective: The aim of our study was to examine the relationship between corticostriatal Aβ-amyloid deposition and cognitive dysfunction in a cohort of patients with Parkinson disease (PD) at risk for dementia. Methods: This was a cross-sectional study of 40 patients with PD with mild cognitive impairment (MCI) or other known dementia risk factors. Subjects underwent dynamic Aβ-amyloid and vesicular monoamine transporter 2 PET imaging using [11C] Pittsburgh compound B (PiB) and [11C]dihydrotetrabenazine (DTBZ), respectively, and neuropsychological assessment. PiB and DTBZ PET data were analyzed using the Logan graphical method to determine cerebral PiB deposition relative to the cerebellar hemispheres and striatal DTBZ binding relative to occipital neocortex. Component z scores were calculated for individual cognitive domains (memory, visuospatial processing, working memory/attention, and executive function) and combined linearly for global estimation of cognition. Correlation of cognitive function and cortical PiB binding was investigated. Results: Elevated cerebral PiB binding at levels seen in patients with AD was infrequent (6 of 40 subjects). Mean cortical PiB binding in the entire cohort was 1.16 ± 0.16 (distribution volume ratio; range 0.96–1.78). A significant correlation was noted between cortical PiB binding and global composite cognitive function (r = −0.55, p < 0.005) as well as the Wechsler Adult Intelligence Scale score (r = −0.54, p = 0.0004). Conclusion: Elevated cerebral Aβ-amyloid deposition at levels seen in Alzheimer disease is uncommon in subjects with PD at risk for dementia. In our sample, the prevalence of markedly elevated PiB binding was significantly lower than that found in prior studies of cognitively normal elderly individuals. Neocortical PiB binding correlated robustly with measures of cognitive impairment in our cohort.


Movement Disorders | 2013

β-Amyloid and postural instability and gait difficulty in Parkinson's disease at risk for dementia.

Martijn Muller; Kirk A. Frey; Myria Petrou; Vikas Kotagal; Robert A. Koeppe; Roger L. Albin; Nicolaas I. Bohnen

Although motor impairments in Parkinsons disease (PD) are attributed to nigrostriatal dopaminergic denervation, postural instability and gait difficulty (PIGD) features are less responsive to dopaminergic medications. PIGD features are a risk factor also for the development of dementia in PD (PDD). These observations suggest that nondopaminergic mechanisms may contribute to axial motor impairments. The aim was to perform a correlative PET study to examine the relationship between neocortical β‐amyloid deposition ([11C]‐Pittsburgh Compound B), nigrostriatal dopaminergic denervation ([11C]‐dihydrotetrabenazine), and PIGD feature severity in PD patients at risk for dementia. This was a cross‐sectional study of 44 PD patients (11 female and 33 male; 69.5 ± 6.6 years of age; 7.0 ± 4.8 years motor disease duration; mean H & Y stage: 2.7 ± 0.5) who underwent PET, motor feature severity assessment using the Movement Disorder Society revised UPDRS, and the Dementia Rating Scale (DRS). Linear regression (R2adj = 0.147; F4,39 = 2.85; P = 0.036) showed that increased PIGD feature severity was associated with increased neocortical [11C]‐Pittsburgh Compound B binding (β = 0.346; t39 = 2.13; P = 0.039) while controlling for striatal [11C]‐dihydrotetrabenazine binding, age, and DRS total score. Increased neocortical β‐amyloid deposition, even at low‐range levels, is associated with higher PIGD feature severity in PD patients at risk for dementia. This finding may explain why the PIGD motor phenotype is a risk factor for the development of PDD.


JAMA Neurology | 2013

An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-t proton magnetic resonance spectroscopy

Bradley R. Foerster; Martin G. Pomper; Brian C. Callaghan; Myria Petrou; Richard A.E. Edden; Mona A. Mohamed; Robert C. Welsh; Ruth C. Carlos; Peter B. Barker; Eva L. Feldman

IMPORTANCE A lack of neuroinhibitory function may result in unopposed excitotoxic neuronal damage in amyotrophic lateral sclerosis (ALS). OBJECTIVE To determine whether there are reductions in γ-aminobutyric acid (GABA) levels and elevations in glutamate-glutamine (Glx) levels in selected brain regions of patients with ALS by use of proton magnetic resonance spectroscopy. DESIGN Case-control study using short echo time and GABA-edited proton magnetic resonance spectroscopy at 3 T with regions of interest in the left motor cortex, left subcortical white matter, and pons; data analyzed using logistic regression, t tests, and Pearson correlations; and post hoc analyses performed to investigate differences between riluzole-naive and riluzole-treated patients with ALS. SETTING Tertiary referral center. PARTICIPANTS Twenty-nine patients with ALS and 30 age- and sex-matched healthy controls. EXPOSURE Fifteen patients were taking 50 mg of riluzole twice a day as part of their routine clinical care for ALS. MAIN OUTCOMES AND MEASURES Levels of GABA, Glx, choline (a marker of cell membrane turnover), creatine (a marker of energy metabolism), myo-inositol (a marker of glial cells), and N-acetylaspartate (a marker of neuronal integrity). RESULTS Patients with ALS had significantly lower levels of GABA in the motor cortex than did healthy controls (P < .01). Patients with ALS also had significantly lower levels of N-acetylaspartate in the motor cortex (P < .01), subcortical white matter (P < .05), and pons (P < .01) and higher levels of myo-inositol in the motor cortex (P < .001) and subcortical white matter (P < .01) than did healthy controls. Riluzole-naive patients with ALS had higher levels of Glx than did riluzole-treated patients with ALS (P < .05 for pons and motor cortex) and healthy controls (P < .05 for pons and motor cortex). Riluzole-naive patients with ALS had higher levels of creatine in the motor cortex (P < .001 for both comparisons) and subcortical white matter (P ≤ .05 for both comparisons) than did riluzole-treated patients with ALS and healthy controls. Riluzole-naive patients with ALS had higher levels of N-acetylaspartate in the motor cortex than did riluzole-treated patients with ALS (P < .01). CONCLUSIONS AND RELEVANCE There are reduced levels of GABA in the motor cortex of patients with ALS. There are elevated levels of Glx in riluzole-naive patients with ALS compared with riluzole-treated patients with ALS and healthy controls. These results point to an imbalance between excitatory and inhibitory neurotransmitters as being important in the pathogenesis of ALS and an antiglutamatergic basis for the effects of riluzole, although additional research efforts are needed.


Acta Radiologica | 2007

Intracranial infections : Clinical and imaging characteristics

Bradley R. Foerster; Majda M. Thurnher; P. N. Malani; Myria Petrou; F. Carets-Zumelzu; Pia C. Sundgren

The radiologist plays a crucial role in identifying and narrowing the differential diagnosis of intracranial infections. A thorough understanding of the intracranial compartment anatomy and characteristic imaging findings of specific pathogens, as well incorporation of the clinical information, is essential to establish correct diagnosis. Specific types of infections have certain propensities for different anatomical regions within the brain. In addition, the imaging findings must be placed in the context of the clinical setting, particularly in immunocompromised and human immunodeficiency virus (HIV)-positive patients. This paper describes and depicts infections within the different compartments of the brain. Pathology-proven infectious cases are presented in both immunocompetent and immunocompromised patients, with a discussion of the characteristic findings of each pathogen. Magnetic resonance spectroscopy (MRS) characteristics for several infections are also discussed.

Collaboration


Dive into the Myria Petrou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Scott

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge